Ground-State Static Correlation Functions of the Lieb–Liniger Model

Author(s):  
Guillaume Lang
2021 ◽  
Author(s):  
Devi Puttar ◽  
Vishal Verma ◽  
Vinayak Garg ◽  
R. K. Moudgil

2005 ◽  
Vol 19 (30) ◽  
pp. 1793-1802 ◽  
Author(s):  
M. MODARRES

We investigate the possible angular momentum, l, dependence of the ground state energy of normal liquid 3 He . The method of lowest order constrained variational (LOCV) which includes the three-body cluster energy and normalization constraint (LOCVE) is used with angular momentum dependent two-body correlation functions. A functional minimization is performed with respect to each l-channel correlation function. It is shown that this dependence increases the binding energy of liquid 3 He by 8% with respect to calculations without angular momentum dependent correlation functions. The l=0 state has completely different behavior with respect to other l-channels. It is also found that the main contribution from potential energy comes from the l=1 state (p-waves) and the effect of l≥11 is less than about 0.1%. The effective interactions and two-body correlations in different channels are being discussed. Finally we conclude that this l-dependence can be verified experimentally by looking into the magnetization properties of liquid helium 3 and interatomic potentials.


1991 ◽  
Vol 06 (30) ◽  
pp. 2819-2826 ◽  
Author(s):  
GERALD V. DUNNE ◽  
ALBERTO LERDA ◽  
CARLO A. TRUGENBERGER

We construct exact many-body eigenstates of both energy and angular momentum for the N-anyon problem in an external magnetic field. We show that such states span the full ground state eigenspace and arise as correlation functions of Fubini-Veneziano vertex operators of string theory.


1997 ◽  
Vol 08 (05) ◽  
pp. 1037-1061 ◽  
Author(s):  
Werner Fettes ◽  
Ingo Morgenstern ◽  
Thomas Husslein

We present exact and stochastic diagonalization results for a BCS-reduced Hubbard model. The kinetic Hamiltonian is the same as in the single band Hubbard model with additional next nearest neighbor hopping. The interaction of this model is designed to inhibit superconductivity in the d x2-y2 channel. The ground state of this model is studied by exact and stochastic diagonalization technique. We present a review of the technical details of the application of the stochastic diagonalization algorithm on this problem. To verify our results obtained with the stochastic diagonalization, they are compared with the exact diagonalization results. In order to show the convergence of the stochastic diagonalization we give a detailed analysis of the behavior of physical properties with increasing number of states. Finally we study superconductivity in this BCS-reduced Hubbard model. As an indicator of superconductivity we use the occurrence of Off Diagonal Long Range Order. We study the scaling behavior of this model for various attractive interactions and in addition the dependence of the superconducting correlation functions from the filling of the system.


Sign in / Sign up

Export Citation Format

Share Document