Enhanced Post-crack Load Carrying Capacity of Nano and Micro Scale Carbon Fiber Reinforced Mortars

Author(s):  
Maria G. Falara ◽  
Maria S. Konsta-Gdoutos ◽  
Emmanuel E. Gdoutos
2019 ◽  
Vol 3 (1) ◽  
pp. 13 ◽  
Author(s):  
Sanjeev Rao ◽  
Jimmy Thomas ◽  
Alia Aziz ◽  
Wesley Cantwell

In this work, the manufacturing characteristics and a performance evaluation of carbon fiber–reinforced epoxy honeycombs are reported. The vacuum-assisted resin transfer molding process, using a central injection point, is used to infuse a unidirectional dry slit tape with the epoxy resin system Prime 20 LV in a wax mold. The compression behavior of the manufactured honeycomb structure was evaluated by subjecting samples to quasi-static compression loading. Failure criteria for the reinforced honeycombs were developed and failure maps were constructed. These maps can be used to evaluate the reliability of the core for a prescribed loading condition. Improvements in the load-carrying capacity for the reinforced samples, as compared with unreinforced specimens, are discussed and the theoretical predictions are compared with the experimental data. The compression test results highlight a load-carrying capacity up to 26 kN (~143 MPa) for a single hexagonal cell (unit cell) and 160 kN (~170 MPa) for cores consisting of 2.5 × 3.5 cells. The failure map indicates buckling to be the predominant mode of failure at low relative densities, shifting to cell wall fracture at relative densities closer to a value of 10−1. The resulting energy absorption diagram shows a monotonic increase in energy absorption with the increasing t/l ratio of the honeycomb core cell walls.


2021 ◽  
Vol 23 (2) ◽  
pp. 115-122
Author(s):  
Junaedi Utomo ◽  
Muhammad Nur Khusyeni ◽  
Windu Partono ◽  
Ay Lie Han ◽  
Buntara S. Gan

Carbon Fiber Reinforced Polymers (CFRP) are widely used as external concrete reinforcement. The behavior of T-beams strengthened in shear and flexure using CFRP sheets and plates was studied to analyze the load carrying capacity and failure mode as compared to conventional concrete members. The bonding response of the plate-to-concrete was investigated by comparing a specimen with a plate anchored at the far ends, one without anchoring. The sheets were in situ wet lay-up, the plate was pre-impregnated and pultruded during manufacturing. The test result suggested that this integrated strengthening method notably improved the load-carrying capacity, it was also demonstrated that anchoring had a positive but insignificant effect on the moment capacity and deformation. The influence of anchoring was noteworthy from the point of view that it shifted the failure mode from debonding to CFRP plate rupture. The most important factors influencing the behavior of CFRP strengthened beams are outlined.


2018 ◽  
Vol 12 (8) ◽  
pp. 179 ◽  
Author(s):  
Shereen K. H. Hassan ◽  
Mu`tasim S. Abdel-Jaber ◽  
Maha Alqam

Reinforced concrete structures that incorporates deep beams are generally susceptible to deterioration due to weathering effects and sulphur attacks, under-design in the detailing of concrete cover and/or reinforcement, and construction errors. In lieu of demolishing and replacing these structures, rehabilitation and strengthening using carbon fiber composites becomes a cost-effective viable alternative. Recent advances in research and innovation have introduced concrete repair and strengthening systems that are primarily based on fiber reinforced polymer composites. These systems have offered engineers the opportunity to provide additional stability to the structural elements in question and to restore the damaged portions back to their original load carrying capacity.  This paper investigates the effect of Carbon Fiber Reinforced Polymer (CFRP) composites in enhancing the flexural performance of damaged reinforced concrete deep beams. Two types of CFRP composites and epoxy were used in the experimental investigation carried out and as described by this paper: 1) high strength carbon fiber reinforced polymer (CFRP) plates, commercially known as MBrace Laminate, that are bonded using an epoxy resin specifically suited for the installation and used to strengthen existing structural members; and, 2) MBrace Fiber 230/4900, a 100% solids, low viscosity epoxy material that is used to encapsulate MBrace carbon, glass, and aramid fiber fabrics so that when it cures, it provides a high performance FRP sheet.Test samples were divided into four groups: A control group, and three rehabilitated test groups with CRFP fibers, where the main variable among them was the percent length of CRFP used along the bottom beam extreme surface between supports (i.e, for two of the groups reinforced with MBrace laminates), and the use of MBrace Fiber 230/4500 CRFP sheets on the 4th beam along its vertical sides as well as the bottom extreme face between supports. All beams had similar cross-sectional dimensions and reinforcement, and were designed to fail in flexure rather than shear. The results show that CFRP composites, both laminated and sheet type, have increased the load carrying capacity in comparison to the control specimen, where observations were recorded pertaining to the delayed formation of vertical flexural cracks at the section of maximum moment, and diagonal shear cracks at beam ends. The increase in the load carrying capacity varied among the three rehabilitated test group beams, with the 4th group showing the highest ultimate load carrying capacity when compared to the control specimen. 


MRS Bulletin ◽  
2004 ◽  
Vol 29 (5) ◽  
pp. 324-327 ◽  
Author(s):  
Christian P. Vernet

AbstractUltrahigh-performance concretes (UHPCs) are obtained by optimizing several technologies: minimizing the amount of water added, using superplasticizers and a wide particle size distribution, and packing the particles to improve fluidity with minimized water additions and to optimize load-carrying capacity. Fibers can be incorporated to increase ductility, leading to ultrahigh-performance fiber-reinforced concretes (UHPFRCs). Such enhanced concretes can approach the compressive strength of steel, with a remarkable improvement in durability. UHPCs offer new solutions for innovative construction, especially in aggressive environments.


Author(s):  
Ali Alavizadeh-Farhang ◽  
Johan Silfwerbrand

To study the structural responses of plain and steel fiber-reinforced concrete pavements under combined mechanical and thermal loads, two test series have been conducted with plain and steel fiber-reinforced concrete beams. The magnitude and duration of the differences in the induced stresses caused by traffic load and a positive nonlinear temperature gradient (the top surface was warmer than the bottom surface during the day) may lead to some relaxation of thermal stresses and subsequently increase the load-carrying capacity. Considering the loss of support contact in the interior part of the concrete pavement, the experimental study of combined loading with restrained concrete beams may provide some insight and an indication of whether the superposition of stresses is a proper approach. The beams were subjected to solely thermal, solely mechanical, and combined thermal and mechanical loads while the rotation of the beam at supports was prevented. The results of tests conducted with both plain and steel fiber-reinforced beams showed that the superposition of stresses under combined loading before cracking gave a satisfactory estimation of the load-carrying capacities. The results also showed that the effect of relaxation of stresses due to short-term thermal loads was not noticeable in the load-carrying capacity achieved in tests with combined thermal and mechanical loads. On the contrary, a tendency for reduction of the load-carrying capacity was observed at higher thermal gradients. In addition, the overall structural responses of steel fiber-reinforced concrete beams under mechanical load and a nonlinear temperature gradient combined were similar to the responses of plain concrete beams up to the cracking stage. However, the release of thermal stresses due to cracking and the considerable residual load-carrying capacity after cracking were the most important observations for steel fiber-reinforced concrete beams.


2010 ◽  
Vol 2010 ◽  
pp. 1-6 ◽  
Author(s):  
S. Talukdar ◽  
N. Banthia

A study was carried out to investigate the use of Sprayed Fiber Reinforced Polymer (SFRP) for retrofit of timber beams. A total of 10-full scale specimens were tested. Two different timber preservatives and two different bonding agents were investigated. Strengthening was characterized using load deflection diagrams. Results indicate that it is possible to enhance load-carrying capacity and energy absorption characteristics using the technique of SFRP. Of the two types of preservatives investigated, the technique appears to be more effective for the case of creosote-treated specimens, where up to a 51% improvement in load-carrying capacity and a 460% increase in the energy absorption capacity were noted. Effectiveness of the bonding agent used was dependent on the type of preservative the specimen had been treated with.


2011 ◽  
Vol 146 ◽  
pp. 1-11 ◽  
Author(s):  
Fethi Abbassi ◽  
A. Gherissi ◽  
Ali Zghal ◽  
Sébastien Mistou ◽  
Joël Alexis

Thin-walled textile-reinforced composite parts possess excellent properties, including lightweight, high specific strength, internal torque and moment resistance which offer opportunities for applications in mass transit and ground transportation. In particular, the composite material is widely used in aerospace and aircraft structure. In order to estimate accurately the parameters of the constitutive law of woven fabric composite, it is recommended to canvass multi-scale modeling approaches: meso, micro and macro. In the present investigation, based on the experimental results established by carrying out observations by Scanning electron microscope (SEM), we developed a micro-scale FEM model of carbon-fiber reinforced thermoplastic using a commercial software ABAQUS. From the SEM cartography, one identified two types of representative volume elementary (RVE): periodic and random distribution of micro-fibers in the yarn. Referring to homogenization method and by applying the limits conditions to the RVE, we have extracted the coefficients of the rigidity matrix of the studied composites. In the last part of this work, we compare the results obtained by random and periodic RVE model of carbon/PPS and we compute the relative error assuming that random model gives the right value.


2013 ◽  
Vol 753-755 ◽  
pp. 520-524
Author(s):  
Xin Zhao

Taking a flyover as the background, this paper compares two reinforcement scheme, and ultimately chooses the paste carbon fiber polymer method to reinforce the bridge. It calculates and analyzes the structure before and after the reinforcement, then compares the stress state , shear load-carrying capacity and flexural capacity. At last ,it evaluates the effect of the paste carbon fiber polymer method and puts forward some suggestions.


Sign in / Sign up

Export Citation Format

Share Document