Methods and Means of Ensuring Interference Resistance of High-Speed Electronic Devices

2019 ◽  
pp. 447-542
Author(s):  
Anatoly Belous ◽  
Vitali Saladukha
Alloy Digest ◽  
1986 ◽  
Vol 35 (11) ◽  

Abstract ENPLATE NI-423 is a nickel-phosphorus alloy deposited by chemical reduction without electric current. It is deposited by a stable, relatively high-speed functional electroless nickel process that produces a low-stress coating with good ductility and excellent resistance to corrosion. Its many uses include equipment for chemicals and food, aerospace components, molds and electronic devices. This datasheet provides information on composition, physical properties, and hardness. It also includes information on corrosion and wear resistance as well as heat treating, machining, joining, and surface treatment. Filing Code: Ni-343. Producer or source: Enthone Inc..


2021 ◽  
Vol 79 (6) ◽  
pp. 631-640
Author(s):  
Takaaki Tsunoda ◽  
Takeo Tsukamoto ◽  
Yoichi Ando ◽  
Yasuhiro Hamamoto ◽  
Yoichi Ikarashi ◽  
...  

Electronic devices such as medical instruments implanted in the human body and electronic control units installed in automobiles have a large impact on human life. The electronic circuits in these devices require highly reliable operation. Radiographic testing has recently been in strong demand as a nondestructive way to help ensure high reliability. Companies that use high-density micrometer-scale circuits or lithium-ion batteries require high speed and high magnification inspection of all parts. The authors have developed a new X-ray source supporting these requirements. The X-ray source has a sealed tube with a transmissive target on a diamond window that offers advantages over X-ray sources having a sealed tube with a reflective target. The X-ray source provides high-power-density X-ray with no anode degradation and a longer shelf life. In this paper, the authors will summarize X-ray source classification relevant to electronic device inspection and will detail X-ray source performance requirements and challenges. The paper will also elaborate on technologies employed in the X-ray source including tube design implementations for high-power-density X-ray, high resolution, and high magnification simultaneously; reduced system downtime for automated X-ray inspection; and reduced dosages utilizing quick X-ray on-and-off emission control for protection of sensitive electronic devices.


Author(s):  
Marie Dabos ◽  
Isabelle Ranc-Darbord ◽  
Marc Genetier ◽  
Nicolas Lecysyn ◽  
Khanh-Hung Tran ◽  
...  

Membranes ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 71 ◽  
Author(s):  
Maria Montanino ◽  
Giuliano Sico ◽  
Anna De Girolamo Del Mauro ◽  
Margherita Moreno

Printed batteries have undergone increased investigation in recent years because of the growing daily use of small electronic devices. With this in mind, industrial gravure printing has emerged as a suitable production technology due to its high speed and quality, and its capability to produce any shape of image. The technique is one of the most appealing for the production of functional layers for many different purposes, but it has not been highly investigated. In this study, we propose a LiFePO4 (LFP)-based gravure printed cathode for lithium-ion rechargeable printed batteries and investigate the possibility of employing this printing technique in battery manufacture.


Inventions ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 4
Author(s):  
Ping-Hei Chen ◽  
Hyung Cho

Innovative and high-end techniques have been recently developed in academic institutes and are gradually being employed in our daily lives for improving living quality, namely, artificial intelligence (AI) technology, autonomous cars, hyper-loop for high-speed transportation, miniaturization of electronic devices, heat dissipation from cooling films to outer space, and so on [...]


2015 ◽  
Vol 799-800 ◽  
pp. 402-406 ◽  
Author(s):  
S. Hassan ◽  
Mohd Sallehuddin Yusof ◽  
M.I. Maksud ◽  
M.N. Nodin ◽  
Noor Azlina Rejab

Roll to roll process is one of the famous printing techniques that are possible to create graphic and electronic device on variable substrate by using conductive ink. Graphene is an example of material that can be used as printing ink which usually used in producing micro-scale electronic devices. Here, it is proposed that extending roll to roll printing technique into the multiple micro-scale printing fine solid line onto substrate by using graphene as a printing ink. Flexography is a high speed roll to roll printing technique commonly used in paper printing industry. And this study elaborates the feasibility of graphene as a printing ink use in combination of flexography and micro-contact or micro-flexo printing for micro fine solid line. This paper will illustrates the review of graphene in producing multiple micro-solid lines printing capability for the application of printing electronic, graphic and bio-medical.


1996 ◽  
Vol 438 ◽  
Author(s):  
R. G. Elliman ◽  
H. Jiang ◽  
W. C. Wong ◽  
P. Kringhøj

AbstractGexSi1-x, strained layers can be fabricated by Ge implantation and solid-phase epitaxy and can be used in electronic devices to improve their performance. Several important materials science issues are addressed, including the effect of the strain on solid-phase-epitaxy, the effect of oxidation on the implanted Ge distribution, and the effect of Ge on the oxidation rate of Si. The potential of this process is demonstrated by comparing the performance of metal-oxidesemiconductor field-effect-transistors (MOSFETs) employing ion-beam synthesised GeSi strained layer channel regions with that of Si-only devices.


Sign in / Sign up

Export Citation Format

Share Document