Indirect Fitness

Keyword(s):  
2021 ◽  
Vol 9 ◽  
Author(s):  
Peter Schausberger ◽  
Shuichi Yano ◽  
Yukie Sato

Cooperative behaviors are evolutionary stable if the direct and/or indirect fitness benefits exceed the costs of helping. Here we discuss cooperation and behaviors akin to cooperation in subsocial group-living species of two genera of herbivorous spider mites (Tetranychidae), i.e., the largely polyphagous Tetranychus spp. and the nest-building Stigmaeopsis spp., which are specialized on grasses, such as bamboo. These spider mites are distributed in patches on various spatial scales, that is, within and among leaves of individual host plants and among individual hosts of single or multiple plant species. Group-living of spider mites is brought about by plant-colonizing foundresses ovipositing at local feeding sites and natal site fidelity, and by multiple individuals aggregating in the same site in response to direct and/or indirect cues, many of which are associated with webbing. In the case of the former, emerging patches are often composed of genetically closely related individuals, while in the case of the latter, local patches may consist of kin of various degrees and/or non-kin and even heterospecific spider mites. We describe and discuss ultimate and proximate aspects of cooperation by spider mites in host plant colonization and exploitation, dispersal, anti-predator behavior, and nesting-associated behaviors and conclude with theoretical and practical considerations of future research on cooperation in these highly rewarding model animals.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0252227
Author(s):  
Andrea L. Liebl ◽  
Jeff S. Wesner ◽  
Andrew F. Russell ◽  
Aaron W. Schrey

Individuals may delay dispersing from their natal habitat, even after maturation to adulthood. Such delays can have broad consequences from determining population structure to allowing an individual to gain indirect fitness by helping parents rear future offspring. Dispersal in species that use delayed dispersal is largely thought to be opportunistic; however, how individuals, particularly inexperienced juveniles, assess their environments to determine the appropriate time to disperse is unknown. One relatively unexplored possibility is that dispersal decisions are the result of epigenetic mechanisms interacting between a genome and environment during development to generate variable dispersive phenotypes. Here, we tested this using epiRADseq to compare genome-wide levels of DNA methylation of blood in cooperatively breeding chestnut-crowned babblers (Pomatostomus ruficeps). We measured dispersive and philopatric individuals at hatching, before fledging, and at 1 year (following when first year dispersal decisions would be made). We found that individuals that dispersed in their first year had a reduced proportion of methylated loci than philopatric individuals before fledging, but not at hatching or as adults. Further, individuals that dispersed in the first year had a greater number of loci change methylation state (i.e. gain or lose) between hatching and fledging. The existence and timing of these changes indicate some influence of development on epigenetic changes that may influence dispersal behavior. However, further work needs to be done to address exactly how developmental environments may be associated with dispersal decisions and which loci in particular are manipulated to generate such changes.


2020 ◽  
Vol 31 (6) ◽  
pp. 1369-1378 ◽  
Author(s):  
Dario Josi ◽  
Annika Freudiger ◽  
Michael Taborsky ◽  
Joachim G Frommen

Abstract In cooperatively breeding species, nonbreeding individuals provide alloparental care and help in territory maintenance and defense. Antipredator behaviors of subordinates can enhance offspring survival, which may provide direct and indirect fitness benefits to all group members. Helping abilities and involved costs and benefits, risks, and outside options (e.g., breeding independently) usually diverge between group members, which calls for status-specific differentiated behavioral responses. Such role differentiation within groups may generate task-specific division of labor, as exemplified by eusocial animals. In vertebrates, little is known about such task differentiation among group members. We show how breeders and helpers of the cooperatively breeding cichlid Neolamprologus savoryi partition predator defense depending on intruder type and the presence of dependent young. In the field, we experimentally simulated intrusions by different fish species posing a risk either specifically to eggs, young, or adults. We used intrusions by harmless algae eaters as a control. Breeders defended most when dependent young were present, while helper investment hinged mainly on their body size and on the potential threat posed by the respective intruders. Breeders and helpers partitioned defense tasks primarily when dependent young were exposed to immediate risk, with breeders investing most in antipredator defense, while helpers increased guarding and care in the breeding chamber. Breeders’ defense likely benefits helpers as well, as it was especially enhanced in the treatment where helpers were also at risk. These findings illustrate that in a highly social fish different group members exhibit fine-tuned behavioral responses in dependence of ecological and reproductive parameter variation.


2020 ◽  
Vol 31 (3) ◽  
pp. 731-738 ◽  
Author(s):  
Simon Vitt ◽  
Iris Madge Pimentel ◽  
Timo Thünken

Abstract While the importance of kin discrimination, that is, kin recognition and subsequent differential treatment of kin and nonkin, is well established for kin-directed cooperation or altruism, the role of kin discrimination in the context of kin competition and kin avoidance is largely unexplored. Theory predicts that individuals avoiding competition with kin should be favored by natural selection due to indirect fitness benefits. Using an experimental approach, we investigated whether the presence of same-sex kin affects avoidance and explorative behavior in subadult Pelvicachromis taeniatus, a West African cichlid fish with strong intrasexual competition in both sexes. Pelvicachromis taeniatus is capable of recognizing kin using phenotype matching and shows kin discrimination in diverse contexts. When exposed to a same-sex conspecific, both males and females tended to interact less with the related opponent. Moreover, individuals explored a novel environment faster after exposure to kin than to nonkin. This effect was more pronounced in females. Individuals avoiding the proximity of same-sex relatives may reduce kin competition over resources such as mating partners or food.


The Auk ◽  
1988 ◽  
Vol 105 (1) ◽  
pp. 70-77 ◽  
Author(s):  
William J. Sydeman ◽  
Marcel Güntert ◽  
Russell P. Balda

Abstract We studied cooperative-breeding Pygmy Nuthatches (Sitta pygmaea) for 4 yr in northern Arizona. Breeding units contained 2-5 birds. Helpers were found at about 30% of all nests. All helpers that later bred on the study area were male. Helpers were mostly yearlings, and offspring or siblings of the birds that they aided, but often aided at least one unrelated breeder. Breeding units with helpers produced significantly more young than those without helpers. Breeding units in habitats with the greatest floral diversity and structural maturity fledged significantly more young than those in other habitats. Habitat did not influence the effect of helpers. Year effects increased the strength of the relationship between helpers and annual reproductive output. Previous breeding experience and pair-bond duration were not related to reproductive success. Total brood loss, although rare, was responsible for the difference in reproductive output among pairs with and without helpers and between habitats. Breeding birds with helpers benefit by an increase in direct fitness. The advantage to the helpers is not clear but may be an increase in indirect fitness associated with aiding relatives. Helpers may benefit directly, however, by sharing roosting cavities on a group territory thereby enhancing overwinter survival.


2020 ◽  
Vol 375 (1798) ◽  
pp. 20190256 ◽  
Author(s):  
Florien A. Gorter ◽  
Michael Manhart ◽  
Martin Ackermann

Microbial communities are complex multi-species assemblages that are characterized by a multitude of interspecies interactions, which can range from mutualism to competition. The overall sign and strength of interspecies interactions have important consequences for emergent community-level properties such as productivity and stability. It is not well understood how interspecies interactions change over evolutionary timescales. Here, we review the empirical evidence that evolution is an important driver of microbial community properties and dynamics on timescales that have traditionally been regarded as purely ecological. Next, we briefly discuss different modelling approaches to study evolution of communities, emphasizing the similarities and differences between evolutionary and ecological perspectives. We then propose a simple conceptual model for the evolution of interspecies interactions in communities. Specifically, we propose that to understand the evolution of interspecies interactions, it is important to distinguish between direct and indirect fitness effects of a mutation. We predict that in well-mixed environments, traits will be selected exclusively for their direct fitness effects, while in spatially structured environments, traits may also be selected for their indirect fitness effects. Selection of indirectly beneficial traits should result in an increase in interaction strength over time, while selection of directly beneficial traits should not have such a systematic effect. We tested our intuitions using a simple quantitative model and found support for our hypotheses. The next step will be to test these hypotheses experimentally and provide input for a more refined version of the model in turn, thus closing the scientific cycle of models and experiments. This article is part of the theme issue ‘Conceptual challenges in microbial community ecology’.


2017 ◽  
Vol 284 (1867) ◽  
pp. 20171984 ◽  
Author(s):  
Samuel J. Lymbery ◽  
Leigh W. Simmons

Sexual conflict occurs when reproductive partners have different fitness optima, and can lead to the evolution of traits in one sex that inflict fitness costs on the opposite sex. Recently, it has been proposed that antagonism by males towards females should be reduced when they compete with relatives, because reducing the future productivity of a female would result in an indirect fitness cost for a harmful male. We tested this prediction in the seed beetle Callosobruchus maculatus , the males of which harm females with genital spines and pre-copulatory harassment. We compared lifespan, lifetime egg production and lifetime offspring production among females housed with groups of males that varied in their familiarity and relatedness. Females produced significantly more eggs and offspring when grouped with males who were both related and familiar to each other. There was no effect of male relatedness or familiarity on female lifespan. Our results suggest that males plastically adjust their harmfulness towards females in response to changes in inclusive fitness payoffs, and that in this species both genetic relatedness and social familiarity mediate this effect.


2017 ◽  
Vol 284 (1860) ◽  
pp. 20170441 ◽  
Author(s):  
Sally Le Page ◽  
Irem Sepil ◽  
Ewan Flintham ◽  
Tommaso Pizzari ◽  
Pau Carazo ◽  
...  

Males compete over mating and fertilization, and often harm females in the process. Inclusive fitness theory predicts that increasing relatedness within groups of males may relax competition and discourage male harm of females as males gain indirect benefits. Recent studies in Drosophila melanogaster are consistent with these predictions, and have found that within-group male relatedness increases female fitness, though others have found no effects. Importantly, these studies did not fully disentangle male genetic relatedness from larval familiarity, so the extent to which modulation of harm to females is explained by male familiarity remains unclear. Here we performed a fully factorial design, isolating the effects of male relatedness and larval familiarity on female harm. While we found no differences in male courtship or aggression, there was a significant interaction between male genetic relatedness and familiarity on female reproduction and survival. Relatedness among males increased female lifespan, reproductive lifespan and overall reproductive success, but only when males were familiar. By showing that both male relatedness and larval familiarity are required to modulate female harm, these findings reconcile previous studies, shedding light on the potential role of indirect fitness effects on sexual conflict and the mechanisms underpinning kin recognition in fly populations.


Sign in / Sign up

Export Citation Format

Share Document