Four-Degree Free Spheric Morphology Robotic Arm for Manipulation of Objects by Means of Platform Robotic Operating System (ROS)

Author(s):  
Juan David Chimarro Amaguaña ◽  
Fidel David Parra Balza
Keyword(s):  
Author(s):  
Yi-Chang Wu ◽  
Huan-Chun Wang

Robots have been used in various areas to replace manpower, reduce costs, and facilitate more effective resource allocation. This study sought to assist the business of the bureau by developing two robots using the Robot Operating System. The developed robots have autonomous intelligent navigation functions and are suited to monitor the environment of <br /> the laboratories in the bureau. One robot had a temperature and humidity sensor and an infrared thermal camera, and it could be used to patrol and monitor the laboratory environment. The other robot had drawers in which specimens could be placed; robotic arm in the elevator could coordinate and control elevators, enabling the robot to move and transport specimens autonomously. Plenty of tests were conducted to verify the feasibility <br /> and practicality.


2021 ◽  
Vol 5 (1) ◽  
pp. 26-37
Author(s):  
Rawan A. AlRashid Agha ◽  
Zhwan Hani Mahdi ◽  
Muhammed N. Sefer ◽  
Ibrahim Hamarash

Nowadays, simulators are being used more and more during the development of robotic systems due to the efficiency of the development and testing processes of such applications. Undoubtedly, these simulators save time, resources and costs, as well as enable ease of demonstrations of the system. Specifically, tools like the open source Robotic Operating System (ROS) and Gazebo have gained popularity in building models of robotic systems. ROS is extensively used in robotics due to the pros of hardware abstraction and code reuse. The Gazebo platform is used for visualisation because of its high compatibility with ROS. In this paper, ROS and Gazebo have been integrated to build an interface for the visualisation of the Katana Arm manipulator.


Author(s):  
Stephen Balakirsky ◽  
Zeid Kootbally

The Robot Operating System (ROS) is steadily gaining popularity among robotics researchers as an open source framework for robot control. Additionally, the Unified System for Automation and Robot Simulation (USARSim) has already been used for many years by robotics researchers and developers as a validated framework for simulation. This paper presents a new ROS node that is designed to seamlessly interface between ROS and USARSim. It provides for automatic configuration of ROS transforms and topics to allow for full utilization of the simulated hardware. The design of the new node, as well as examples of its use for mobile robot and robotic arm control are presented.


Author(s):  
E. Wisse ◽  
A. Geerts ◽  
R.B. De Zanger

The slowscan and TV signal of the Philips SEM 505 and the signal of a TV camera attached to a Leitz fluorescent microscope, were digitized by the data acquisition processor of a Masscomp 5520S computer, which is based on a 16.7 MHz 68020 CPU with 10 Mb RAM memory, a graphics processor with two frame buffers for images with 8 bit / 256 grey values, a high definition (HD) monitor (910 × 1150), two hard disks (70 and 663 Mb) and a 60 Mb tape drive. The system is equipped with Imaging Technology video digitizing boards: analog I/O, an ALU, and two memory mapped frame buffers for TV images of the IP 512 series. The Masscomp computer has an ethernet connection to other computers, such as a Vax PDP 11/785, and a Sun 368i with a 327 Mb hard disk and a SCSI interface to an Exabyte 2.3 Gb helical scan tape drive. The operating system for these computers is based on different versions of Unix, such as RTU 4.1 (including NFS) on the acquisition computer, bsd 4.3 for the Vax, and Sun OS 4.0.1 for the Sun (with NFS).


2020 ◽  
Vol 6 (1) ◽  
pp. 1
Author(s):  
Kuswanto Kuswanto ◽  
Juan Junius ◽  
Anita Christine Sembiring

Facility layout is integrated planning of the flow of a product in an operating system to obtain the most effective and efficient interrelation between workers, materials, machinery, and equipment as well as handling and transferring materials. A company engaged in furniture manufacturing has a problem in its production process, namely, the distance between machines is too far so that it affects the cost of handling materials. Distant workstations are found on profile machines, milling machines, measuring machines, cutting machines. Therefore, improvements must be made to the layout of facilities on the production floor so that facility layout is efficient and material handling costs are reduced. The problem-solving approach used is the Graph Method and CRAFT Algorithm. The results of the research show that material handling costs are reduced by 7.58% or Rp. 17,765 using the CRAFT algorithm.


2015 ◽  
Vol 9 (2) ◽  
pp. 182
Author(s):  
Germán Buitrago Salazar ◽  
Olga Lucía Ramos ◽  
Dario Amaya

Sign in / Sign up

Export Citation Format

Share Document