Smart Recommendation System Based on Understanding User Behavior with Deep Learning

Author(s):  
Reza Mahdavi ◽  
Afsaneh Hasanjani Roshan
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Jing Zhang

The sharing of English teaching resources has always been a concern. In order to further improve the value of different English teaching resources, this paper proposes a resource management system based on an improved collaborative recommendation algorithm. The proposed model can predict user behavior based on deep learning models of graph neural network (GNN) and recurrent neural network (RNN). The graph neural network can capture the hidden state of local user behavior and be used as a preprocessing step. Recurrent neural networks can capture time series information. Therefore, the model is constructed by combining GNN and RNN to obtain the advantages of both. In order to prove the effectiveness of the model, we used CNGrid’s real user behavior dataset in the experiment and finally compared the results with other methods. The different deep learning-based models achieved a precision of up to 88% and outperformed other traditional models. The experimental results show that this new deep learning model has good sharing value.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Triyanna Widiyaningtyas ◽  
Indriana Hidayah ◽  
Teguh B. Adji

AbstractCollaborative filtering is one of the most widely used recommendation system approaches. One issue in collaborative filtering is how to use a similarity algorithm to increase the accuracy of the recommendation system. Most recently, a similarity algorithm that combines the user rating value and the user behavior value has been proposed. The user behavior value is obtained from the user score probability in assessing the genre data. The problem with the algorithm is it only considers genre data for capturing user behavior value. Therefore, this study proposes a new similarity algorithm – so-called User Profile Correlation-based Similarity (UPCSim) – that examines the genre data and the user profile data, namely age, gender, occupation, and location. All the user profile data are used to find the weights of the similarities of user rating value and user behavior value. The weights of both similarities are obtained by calculating the correlation coefficients between the user profile data and the user rating or behavior values. An experiment shows that the UPCSim algorithm outperforms the previous algorithm on recommendation accuracy, reducing MAE by 1.64% and RMSE by 1.4%.


Author(s):  
Varsha R ◽  
Meghna Manoj Nair ◽  
Siddharth M. Nair ◽  
Amit Kumar Tyagi

The Internet of Things (smart things) is used in many sectors and applications due to recent technological advances. One of such application is in the transportation system, which is of primary use for the users to move from one place to another place. The smart devices which were embedded in vehicles are useful for the passengers to solve his/her query, wherein future vehicles will be fully automated to the advanced stage, i.e. future cars with driverless feature. These autonomous cars will help people a lot to reduce their time and increases their productivity in their respective (associated) business. In today’s generation and in the near future, privacy preserving and trust will be a major concern among users and autonomous vehicles and hence, this paper will be able to provide clarity for the same. Many attempts in previous decade have provided many efficient mechanisms, but they all work only with vehicles along with a driver. However, these mechanisms are not valid and useful for future vehicles. In this paper, we will use deep learning techniques for building trust using recommender systems and Blockchain technology for privacy preserving. We also maintain a certain level of trust via maintaining the highest level of privacy among users living in a particular environment. In this research, we developed a framework that could offer maximum trust or reliable communication to users over the road network. With this, we also preserve privacy of users during traveling, i.e., without revealing identity of respective users from Trusted Third Parties or even Location Based Service in reaching a destination. Thus, Deep Learning based Blockchain Solution (DLBS) is illustrated for providing an efficient recommendation system.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Wei Jiang ◽  
Ruijin Wang ◽  
Zhiyuan Xu ◽  
Yaodong Huang ◽  
Shuo Chang ◽  
...  

The fast developing social network is a double-edged sword. It remains a serious problem to provide users with excellent mobile social network services as well as protecting privacy data. Most popular social applications utilize behavior of users to build connection with people having similar behavior, thus improving user experience. However, many users do not want to share their certain behavioral information to the recommendation system. In this paper, we aim to design a secure friend recommendation system based on the user behavior, called PRUB. The system proposed aims at achieving fine-grained recommendation to friends who share some same characteristics without exposing the actual user behavior. We utilized the anonymous data from a Chinese ISP, which records the user browsing behavior, for 3 months to test our system. The experiment result shows that our system can achieve a remarkable recommendation goal and, at the same time, protect the privacy of the user behavior information.


2021 ◽  
Vol 3 (2) ◽  
pp. 66-72
Author(s):  
Riad Taufik Lazwardi ◽  
Khoirul Umam

The analysis used in this study uses the help of Google Analytics to understand how the user's behavior on the Calculus learning material educational website page. Are users interested in recommendation articles? The answer to this question provides insight into the user's decision process and suggests how far a click is the result of an informed decision. Based on these results, it is hoped that a strategy to generate feedback from clicks should emerge. To evaluate the extent to which feedback shows relevance, versus implicit feedback to explicit feedback collected manually. The study presented in this study differs in at least two ways from previous work assessing the reliability of implicit feedback. First, this study aims to provide detailed insight into the user decision-making process through the use of a recommendation system with an implicit feedback feature. Second, evaluate the relative preferences that come from user behavior (user behavior). This differs from previous studies which primarily assessed absolute feedback. 


2019 ◽  
Vol 15 (4) ◽  
pp. 2124-2135 ◽  
Author(s):  
Renata Lopes Rosa ◽  
Gisele Maria Schwartz ◽  
Wilson Vicente Ruggiero ◽  
Demostenes Zegarra Rodriguez

Webology ◽  
2021 ◽  
Vol 18 (Special Issue 04) ◽  
pp. 1470-1478
Author(s):  
R. Lavanya ◽  
Ebani Gogia ◽  
Nihal Rai

Recommendation system is a crucial part of offering items especially in services that offer streaming. For streaming movie services on OTT, RS are a helping hand for users in finding new movies for leisure. In this paper, we propose a machine learning an approach based on auto encoders to produce a CF system which outputs movie rating for a user based on a huge DB of ratings from other users. Utilising Movie Lens dataset, we explore the use of deep learning neural network based Stacked Auto encoders to predict user s ratings on new movies, thereby enabling movie recommendations. We consequently implement Singular Value Decomposition (SVD) to recommend movies to users. The experimental result showcase that our R S out performs a user-based neighbourhood baseline in terms of MSE on predicted ratings and in a survey in which user judge between recommendation s from both systems.


2020 ◽  
Vol 34 (04) ◽  
pp. 6470-6477
Author(s):  
Canran Xu ◽  
Ming Wu

Learning representations for feature interactions to model user behaviors is critical for recommendation system and click-trough rate (CTR) predictions. Recent advances in this area are empowered by deep learning methods which could learn sophisticated feature interactions and achieve the state-of-the-art result in an end-to-end manner. These approaches require large number of training parameters integrated with the low-level representations, and thus are memory and computational inefficient. In this paper, we propose a new model named “LorentzFM” that can learn feature interactions embedded in a hyperbolic space in which the violation of triangle inequality for Lorentz distances is available. To this end, the learned representation is benefited by the peculiar geometric properties of hyperbolic triangles, and result in a significant reduction in the number of parameters (20% to 80%) because all the top deep learning layers are not required. With such a lightweight architecture, LorentzFM achieves comparable and even materially better results than the deep learning methods such as DeepFM, xDeepFM and Deep & Cross in both recommendation and CTR prediction tasks.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Zhan Shi ◽  
Wei Wang

Swimming is not only an entertaining hobby but also a sporting event. It is a sport for strengthening the body. Although there are many swimming coaches, there are different swimming teaching courses. However, choosing the right swimming instructor or course is the motivation for learning swimming activities. To this end, this paper conducts related research on the personalized recommendation system for swimming teaching based on deep learning with the purpose of improving the accuracy of the recommendation system to meet the needs of the users and promote the development of swimming events. This article mainly uses the experimental test method, the system construction method, and the questionnaire survey method to analyze and study the personalized swimming teaching system and the students’ attitude to it and draw a conclusion finally. The data results show that the accuracy of the system designed in this paper can meet the basic requirements. Hence, it can bring an excellent experience to the users. According to the questionnaire data, 85%–95% of people have great confidence in the personalized recommendation system.


Sign in / Sign up

Export Citation Format

Share Document