The Use of Unmanned Aerial Vehicles in the Monitoring of Forest Fires

Author(s):  
António Correia ◽  
Luis Araújo Santos ◽  
Paulo Carvalho ◽  
José Martinho
2015 ◽  
Vol 45 (7) ◽  
pp. 783-792 ◽  
Author(s):  
Chi Yuan ◽  
Youmin Zhang ◽  
Zhixiang Liu

Because of their rapid maneuverability, extended operational range, and improved personnel safety, unmanned aerial vehicles (UAVs) with vision-based systems have great potential for monitoring, detecting, and fighting forest fires. Over the last decade, UAV-based forest fire fighting technology has shown increasing promise. This paper presents a systematic overview of current progress in this field. First, a brief review of the development and system architecture of UAV systems for forest fire monitoring, detection, and fighting is provided. Next, technologies related to UAV forest fire monitoring, detection, and fighting are briefly reviewed, including those associated with fire detection, diagnosis, and prognosis, image vibration elimination, and cooperative control of UAVs. The final section outlines existing challenges and potential solutions in the application of UAVs to forest firefighting.


2021 ◽  
Vol 7 (6) ◽  
Author(s):  
N. Veretennikova ◽  
V. Kislov ◽  
K. Eremenko

Up to 35 thousand forest fires are registered in Russia annually, the area of fire of which is up to 2.5 million hectares. The use of unmanned aerial vehicles as one of the effective ways to detect and prevent forest fires. The use of UAVs has more advantages over other means of fire detection. In conclusion, the authors conclude that if only an incipient forest fire can be detected, it will prevent large economic and environmental losses.


2021 ◽  
Author(s):  
Nikolas Michael Petrík ◽  
◽  
Pavol Pecho

The paper is focused on comprehensive design of an unmanned aerial vehicle with fixed wing, which would add efficiency to specific activities performed by rescue services. The current rapid development of unmanned aerial vehicles is slowly becoming part of many industries around the world. The aim of this paper is to design an unmanned aerial vehicle that could provide safe, reliable, and efficient operation. The overall design, construction, and installation of the proposed unmanned aerial vehicle should integrate several modern technologies. To make an ideal design of unmanned aerial vehicle it is required to possess the knowledge of current construction methods of additive manufacturing, understanding of legislation in operating conditions and, in addition to general knowledge of unmanned vehicles, also comprehensive skills in programming and configuration of autonomous control elements of autonomous unmanned systems. After the production of the unmanned aerial vehicle with fixed wing, very good technical properties were demonstrated during experimental ground tests. Achieved technical properties are comparable to those owned by the unmanned aerial vehicles that are currently on the market. The final design configuration using an infrared-sensitive optical device could perform activities such as: searching for missing persons in hard-to-reach and vast terrain or searching for forest fires.


Author(s):  
Olena Husak ◽  
Volodymyr Husak

The article proposes a solution to an important problem — the development of an information technology based on expanding the functionality of non-specialized unmanned aerial vehicles (drones) for early detection of forest fires. The proposed information technology is designed to increase the effectiveness of monitoring forest fires. Тhe existing level of information technology does not fully settle the issue of reliable fire protection of forests. Today, there is a contradiction between the high cost of developing high-tech fire-fighting equipment and lack of its efficiency. The elimination of this contradiction will be facilitated by the involvement of additional non-technical and technical resources in the information technology of early detection of forest fire hotspots. The results of the analysis of the use of modern drones prove that the involvement of unmanned aerial vehicles significantly increases the efficiency of many types of monitoring and they can successfully be used to solve the problems of early detection of forest fire hotspots. The results of experiments are presented, which were carried out both for a series of digital images and for video.


Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2874
Author(s):  
Krassimir T. Atanassov ◽  
Peter Vassilev ◽  
Vassia Atanassova ◽  
Olympia Roeva ◽  
Rosen Iliev ◽  
...  

The paper presents a generalized net (GN) model of the process of terrain observation with the help of unmanned aerial vehicles (UAVs) for the prevention and rapid detection of wildfires. Using a GN, the process of monitoring a zone (through a UAV, which is further called a reconnaissance drone) and the localization of forest fires is described. For a more indepth study of the terrain, the reconnaissance drone needs to coordinate with a second UAV, called a specialized drone, so that video and sensory information is provided to the supervising fire command operational center. The proposed GN model was developed to assist in the decision-making process related to the coordination of the operation of both UAVs under dynamically changing terrain circumstances, such as those related to preventing or quickly containing wildfires. It describes the stages (transitions), logical determinants (transition predicate matrices), and directions of information flow (token characteristics) within the process of localization of fires using the pair of reconnaissance and specialized drones.


Author(s):  
A.A. Moykin ◽  
◽  
A.S. Medzhibovsky ◽  
S.A. Kriushin ◽  
M.V. Seleznev ◽  
...  

Nowadays, the creation of remotely-piloted aerial vehicles for various purposes is regarded as one of the most relevant and promising trends of aircraft development. FAU "25 State Research Institute of Chemmotology of the Ministry of Defense of the Russian Federation" have studied the operation features of aircraft piston engines and developed technical requirements for motor oil for piston four-stroke UAV engines, as well as a new engine oil M-5z/20 AERO in cooperation with NPP KVALITET, LLC. Based on the complex of qualification tests, the stated operational properties of the experimental-industrial batch of M-5z/20 AERO oil are generally confirmed.


Sign in / Sign up

Export Citation Format

Share Document