industrial batch
Recently Published Documents


TOTAL DOCUMENTS

112
(FIVE YEARS 18)

H-INDEX

20
(FIVE YEARS 3)

Author(s):  
Marcio Montagnana Vicente Leme ◽  
Osvaldo José Venturini ◽  
Electo Eduardo Silva Lora ◽  
Wellington de Almeida ◽  
Mateus Henrique Rocha ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1074
Author(s):  
Federico Zuecco ◽  
Matteo Cicciotti ◽  
Pierantonio Facco ◽  
Fabrizio Bezzo ◽  
Massimiliano Barolo

Troubleshooting batch processes at a plant-wide level requires first finding the unit causing the fault, and then understanding why the fault occurs in that unit. Whereas in the literature case studies discussing the latter issue abound, little attention has been given so far to the former, which is complex for several reasons: the processing units are often operated in a non-sequential way, with unusual series-parallel arrangements; holding vessels may be required to compensate for lack of production capacity, and reacting phenomena can occur in these vessels; and the evidence of batch abnormality may be available only from the end unit and at the end of the production cycle. We propose a structured methodology to assist the troubleshooting of plant-wide batch processes in data-rich environments where multivariate statistical techniques can be exploited. Namely, we first analyze the last unit wherein the fault manifests itself, and we then step back across the units through the process flow diagram (according to the manufacturing recipe) until the fault cannot be detected by the available field sensors any more. That enables us to isolate the unit wherefrom the fault originates. Interrogation of multivariate statistical models for that unit coupled to engineering judgement allow identifying the most likely root cause of the fault. We apply the proposed methodology to troubleshoot a complex industrial batch process that manufactures a specialty chemical, where productivity was originally limited by unexplained variability of the final product quality. Correction of the fault allowed for a significant increase in productivity.


Author(s):  
Anh-Duong Vo ◽  
Ali Shahmohammadi ◽  
Kimberley McAuley

Sequential model-based design of experiments (MBDOE) is used to select operating conditions for new experiments in a batch-reactor that produces bio-based poly(trimethylene) ether glycol (PO3G). These Bayesian A-optimal experiments are designed to obtain improved estimates of the 70 fundamental-model parameter estimates, while accounting for the model structure and for data from eight previous industrial batch-reactor runs. Settings are selected for three decision variables: reactor temperature, initial catalyst level, and initial water concentration. If only one new experiment is conducted, it should be run at high temperature, with relatively high concentrations of catalyst and initial water. When two new runs are conducted, one should use an intermediate catalyst concentration. The effectiveness of the proposed MBDOE approach is tested using Monte-Carlo simulations, revealing that the selected experiments are superior compared to new experiments selected randomly from corners of the permissible design space.


2021 ◽  
pp. 50807
Author(s):  
Suellen Veloso Côrte Real Coutinho ◽  
Ana Beatriz de Sousa Barros ◽  
Janetty Jany Pereira Barros ◽  
Ananda Karoline Calvacanti Albuquerque ◽  
José Vinícius Melo Barreto ◽  
...  

Coatings ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 853
Author(s):  
Michael Kroker ◽  
Pavel Souček ◽  
Pavol Matej ◽  
Lukáš Zábranský ◽  
Zsolt Czigány ◽  
...  

Ta–B–C coatings were non-reactively sputter-deposited in an industrial batch coater from a single segmented rotating cylindrical cathode employing a combinatorial approach. The chemical composition, morphology, microstructure, mechanical properties, and fracture resistance of the coatings were investigated. Their mechanical properties were linked to their microstructure and phase composition. Coatings placed stationary in front of the racetrack of the target and those performing a 1-axis rotation around the substrate carousel are compared. Utilization of the substrate rotation has no significant effect on the chemical composition of the coatings deposited at the same position compared to the cathode. Whereas the morphology of coatings with corresponding chemical composition is similar for stationary as well as rotating samples, the rotating coatings exhibit a distinct multilayered structure with a repetition period in the range of nanometers despite utilizing a non-reactive process and a single sputter source. All the coatings are either amorphous, nanocomposite or nanocrystalline depending on their chemical composition. The presence of TaC, TaB, and/or TaB2 phases is identified. The crystallite size is typically less than 5 nm. The highest hardness of the coatings is associated with the presence of larger grains in a nanocomposite structure or formation of polycrystalline coatings. The number, density, and length of cracks observed after high-load indentation is on par with current optimized commercially available protective coatings.


2020 ◽  
Vol 68 (7) ◽  
pp. 582-598
Author(s):  
Ala E. F. Bouaswaig ◽  
Keivan Rahimi-Adli ◽  
Matthias Roth ◽  
Alireza Hosseini ◽  
Hugo Vale ◽  
...  

AbstractModel-based solutions for monitoring and control of chemical batch processes have been of interest in research for many decades. However, unlike in continuous processes, in which model-based tools such as Model Predictive Control (MPC) have become a standard in the industry, the reported use of models for batch processes, either for monitoring or control, is rather scarce. This limited use is attributed partly to the inherent complexity of the batch processes (e. g., dynamic, nonlinear, multipurpose) and partly to the lack of appropriate commercial tools in the past. In recent years, algorithms and commercial tools for model-based monitoring and control of batch processes have become more mature and in the era of Industry 4.0 and digitalization they are slowly but steadily gaining more interest in real-word batch applications. This contribution provides a practical example in this application field. Specifically, the use of a grey-box modeling approach, in which a multiway Projection to Latent Structure (PLS) model is combined with a first-principles model, to monitor the evolution of a batch polymerization process and predict in real-time the final batch quality is reported. The modeling approach is described, and the experimental results obtained from an industrial batch laboratory reactor are presented.


2020 ◽  
Vol 59 (33) ◽  
pp. 14868-14880
Author(s):  
Christos Georgakis ◽  
Swee-Teng Chin ◽  
Zhenyu Wang ◽  
Philippe Hayot ◽  
Leo Chiang ◽  
...  

Author(s):  
A.A. Moykin ◽  
◽  
A.S. Medzhibovsky ◽  
S.A. Kriushin ◽  
M.V. Seleznev ◽  
...  

Nowadays, the creation of remotely-piloted aerial vehicles for various purposes is regarded as one of the most relevant and promising trends of aircraft development. FAU "25 State Research Institute of Chemmotology of the Ministry of Defense of the Russian Federation" have studied the operation features of aircraft piston engines and developed technical requirements for motor oil for piston four-stroke UAV engines, as well as a new engine oil M-5z/20 AERO in cooperation with NPP KVALITET, LLC. Based on the complex of qualification tests, the stated operational properties of the experimental-industrial batch of M-5z/20 AERO oil are generally confirmed.


Sign in / Sign up

Export Citation Format

Share Document