Bonded Repair of Composite Structures

Author(s):  
Georgios Kanterakis ◽  
Roland Chemama ◽  
Konstantinos Kitsianos
2012 ◽  
Vol 2012 (4) ◽  
pp. 94-99
Author(s):  
Michał Sałaciński ◽  
Magdalena Zabłocka ◽  
Piotr Synaszko

Abstract The epoxy-bonded joints are widely employed in aerospace in the Composite Patch Bonded Repair (CPBR) method used for repair metallic and composite structures. The properties of epoxy usually meet the mechanical and environmental requirements, but the durability of bonded joints depends also on the surface preparation. The most common techniques used for the surface preparation are Forest Product Laboratory’s (FPL) technique and Phosphoric Acid Anodizing (PAA). Both methods ensure very good adhesion but they have some disadvantages. They require the application of toxic and aggressive acids, dangerous for the operator. Also, the use of acids for cleaning the surfaces can cause corrosion. The sandblasting treatment of metal surfaces ensures quite good adhesion. This technique requires neither specialist equipment nor the use of toxic substances. Recommended by the Royal Australian Air Force (RAAF) the technique is also used by the Air Force Institute of Technology. Sol Gel is a new product developed for the treatment of metal surfaces before bonding. It is not hazardous for the operator and it does not cause corrosion due to its specific chemical composition. The article describes the behavior of bonded joints between two metal surfaces prepared using sandblasting and Sol Gel. The investigations were carried out in various environment conditions according to the ASTM Standards.


2019 ◽  
Vol 224 ◽  
pp. 111025 ◽  
Author(s):  
Gautam Prabhu ◽  
Vivek Katakam ◽  
Vijay Shankar Sridharan ◽  
Sridhar Idapalapati

2017 ◽  
Vol 754 ◽  
pp. 359-362 ◽  
Author(s):  
Florian Lambinet ◽  
Zahra Sharif Khodaei

Bonded repair of composite structures still remains a major concern for the airworthiness authorities because of the uncertainty about the repair quality. This work, investigates the applicability of conventional Structural Health Monitoring (SHM) techniques for monitoring of bonded repair with ring-shaped low profile sensors. A repaired composite panel has been sensorized with two Ring-Shaped Polyvinylidene fluoride piezopolymer Sensors (RSPS) and a piezoelectric (PZT) transducer. An electromechanical impedance (EMI) and Lamb wave analysis have been carried out to check the sensitivity of these sensors to detect an artificially introduced damage simulating a disbond of the repair. The state of the repair have been successfully monitored and reported by both methods.


2016 ◽  
Vol 713 ◽  
pp. 135-138 ◽  
Author(s):  
Florian Lambinet ◽  
Zahra Sharif Khodaei ◽  
M.H. Ferri Aliabadi

Bonded repair of composite structures still remains a crucial concern for the airworthiness authorities because of the uncertainty about the repair quality. This works, investigates the applicability of Structural Health Monitoring (SHM) techniques for monitoring of bonded repair. Active sensing method has been applied to two case studies: a sensorised panel impacted to cause barely visible impact damage (BVID) and repaired afterwards, the tensile and fatigue testing of a composite strap repair. In the first case, the previous sensors have been used to detect an artificially introduced damage. In the second case the failure of the adhesive during the tensile testing is used as basis of the load levels in the tensile-tensile fatigue test. In both cases PZT transducers have been used to monitor the bonded patch. An electromechanical impedance (EMI) and Lamb wave analysis have been carried out to check the overall integrity of the repair patch between. In both cases the state of the repaired composite was monitored successfully and reported.


Author(s):  
Frances M. Ross ◽  
Peter C. Searson

Porous semiconductors represent a relatively new class of materials formed by the selective etching of a single or polycrystalline substrate. Although porous silicon has received considerable attention due to its novel optical properties1, porous layers can be formed in other semiconductors such as GaAs and GaP. These materials are characterised by very high surface area and by electrical, optical and chemical properties that may differ considerably from bulk. The properties depend on the pore morphology, which can be controlled by adjusting the processing conditions and the dopant concentration. A number of novel structures can be fabricated using selective etching. For example, self-supporting membranes can be made by growing pores through a wafer, films with modulated pore structure can be fabricated by varying the applied potential during growth, composite structures can be prepared by depositing a second phase into the pores and silicon-on-insulator structures can be formed by oxidising a buried porous layer. In all these applications the ability to grow nanostructures controllably is critical.


2019 ◽  
Author(s):  
Curtis Hickmott ◽  
Alireza Forghani ◽  
Victoria Hutten ◽  
Evan Lorbiecki ◽  
Frank Palmieri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document