Networks of Function and Shared Ancestry Provide Insights into Diversification of Histone Fold Domain in the Plant Kingdom

Author(s):  
Amish Kumar ◽  
Gitanjali Yadav
2005 ◽  
Vol 25 (3) ◽  
pp. 945-957 ◽  
Author(s):  
M. M. Robinson ◽  
G. Yatherajam ◽  
R. T. Ranallo ◽  
A. Bric ◽  
M. R. Paule ◽  
...  

ABSTRACT TFIIA interacts with TFIID via association with TATA binding protein (TBP) and TBP-associated factor 11 (TAF11). We previously identified a mutation in the small subunit of TFIIA (toa2-I27K) that is defective for interaction with TAF11. To further explore the functional link between TFIIA and TAF11, the toa2-I27K allele was utilized in a genetic screen to isolate compensatory mutants in TAF11. Analysis of these compensatory mutants revealed that the interaction between TAF11 and TFIIA involves two distinct regions of TAF11: the highly conserved histone fold domain and the N-terminal region. Cells expressing a TAF11 allele defective for interaction with TFIIA exhibit conditional growth phenotypes and defects in transcription. Moreover, TAF11 imparts changes to both TFIIA-DNA and TBP-DNA contacts in the context of promoter DNA. These alterations appear to enhance the formation and stabilization of the TFIIA-TBP-DNA complex. Taken together, these studies provide essential information regarding the molecular organization of the TAF11-TFIIA interaction and define a mechanistic role for this association in the regulation of gene expression in vivo.


Genetics ◽  
2000 ◽  
Vol 156 (3) ◽  
pp. 973-981
Author(s):  
Kevin C Keith ◽  
Molly Fitzgerald-Hayes

Abstract Each Saccharomyces cerevisiae chromosome contains a single centromere composed of three conserved DNA elements, CDE I, II, and III. The histone H3 variant, Cse4p, is an essential component of the S. cerevisiae centromere and is thought to replace H3 in specialized nucleosomes at the yeast centromere. To investigate the genetic interactions between Cse4p and centromere DNA, we measured the chromosome loss rates exhibited by cse4 cen3 double-mutant cells that express mutant Cse4 proteins and carry chromosomes containing mutant centromere DNA (cen3). When compared to loss rates for cells carrying the same cen3 DNA mutants but expressing wild-type Cse4p, we found that mutations throughout the Cse4p histone-fold domain caused surprisingly large increases in the loss of chromosomes carrying CDE I or CDE II mutant centromeres, but had no effect on chromosomes with CDE III mutant centromeres. Our genetic evidence is consistent with direct interactions between Cse4p and the CDE I-CDE II region of the centromere DNA. On the basis of these and other results from genetic, biochemical, and structural studies, we propose a model that best describes the path of the centromere DNA around a specialized Cse4p-nucleosome.


2001 ◽  
Vol 21 (15) ◽  
pp. 5109-5121 ◽  
Author(s):  
Yann-Gaël Gangloff ◽  
Jean-Christophe Pointud ◽  
Sylvie Thuault ◽  
Lucie Carré ◽  
Christophe Romier ◽  
...  

ABSTRACT The RNA polymerase II transcription factor TFIID comprises the TATA binding protein (TBP) and a set of TBP-associated factors (TAFIIs). TFIID has been extensively characterized for yeast, Drosophila, and humans, demonstrating a high degree of conservation of both the amino acid sequences of the constituent TAFIIs and overall molecular organization. In recent years, it has been assumed that all the metazoan TAFIIs have been identified, yet no metazoan homologues of yeast TAFII47 (yTAFII47) and yTAFII65 are known. Both of these yTAFIIs contain a histone fold domain (HFD) which selectively heterodimerizes with that of yTAFII25. We have cloned a novel mouse protein, TAFII140, containing an HFD and a plant homeodomain (PHD) finger, which we demonstrated by immunoprecipitation to be a mammalian TFIID component. TAFII140 shows extensive sequence similarity toDrosophila BIP2 (dBIP2) (dTAFII155), which we also show to be a component of DrosophilaTFIID. These proteins are metazoan homologues of yTAFII47 as their HFDs selectively heterodimerize with dTAFII24 and human TAFII30, metazoan homologues of yTAFII25. We further show that yTAFII65 shares two domains with theDrosophila Prodos protein, a recently described potential dTAFII. These conserved domains are critical for yTAFII65 function in vivo. Our results therefore identify metazoan homologues of yTAFII47 and yTAFII65.


Transcription ◽  
2013 ◽  
Vol 4 (3) ◽  
pp. 114-119 ◽  
Author(s):  
Nerina Gnesutta ◽  
Marco Nardini ◽  
Roberto Mantovani

2001 ◽  
Vol 21 (5) ◽  
pp. 1841-1853 ◽  
Author(s):  
Yann-Gaël Gangloff ◽  
Steven L. Sanders ◽  
Christophe Romier ◽  
Doris Kirschner ◽  
P. Anthony Weil ◽  
...  

ABSTRACT We show that the yeast TFIID (yTFIID) component yTAFII47 contains a histone fold domain (HFD) with homology to that previously described for hTAFII135. Complementation in vivo indicates that the yTAFII47 HFD is necessary and sufficient for vegetative growth. Mutation of highly conserved residues in the α1 helix of the yTAFII47 HFD results in a temperature-sensitive phenotype which can be suppressed by overexpression of yTAFII25, as well as by yTAFII40, yTAFII19, and yTAFII60. In yeast two-hybrid and bacterial coexpression assays, the yTAFII47 HFD selectively heterodimerizes with yTAFII25, which we show contains an HFD with homology to the hTAFII28 family We additionally demonstrate that yTAFII65 contains a functional HFD which also selectively heterodimerizes with yTAFII25. These results reveal the existence of two novel histone-like pairs in yTFIID. The physical and genetic interactions described here show that the histone-like yTAFIIs are organized in at least two substructures within TFIID rather than in a single octamer-like structure as previously suggested. Furthermore, our results indicate that ySPT7 has an HFD homologous to that of yTAFII47 which selectively heterodimerizes with yTAFII25, defining a novel histone-like pair in the SAGA complex.


1997 ◽  
Vol 17 (4) ◽  
pp. 2057-2065 ◽  
Author(s):  
G Prelich

BUR3 and BUR6 were identified previously by selecting for mutations that increase transcription from an upstream activating sequence (UAS)-less promoter in Saccharomyces cerevisiae. The bur3-1 and bur6-1 mutations are recessive, increase transcription from a suc2 delta uas allele, and cause other mutant phenotypes, suggesting that Bur3p and Bur6p function as general repressors of the basal transcriptional machinery. The molecular cloning and characterization of BUR3 and BUR6 are presented here. BUR3 is identical to MOT1, a previously characterized essential gene that encodes an ATP-dependent inhibitor of the TATA box-binding protein. Cloning and nucleotide sequence analysis reveals that BUR6 encodes a homolog of DRAP1 (also called NC2alpha), a mammalian repressor of basal transcription. Strains that contain a bur6 null allele are viable but grow extremely poorly, demonstrating that BUR6 is critical for normal cell growth in yeast. The Bur6p histone fold domain is required for function; an extensive nonoverlapping set of deletion alleles throughout the histone fold domain impairs BUR6 function in vivo, whereas mutations in the amino- and carboxy-terminal tails have no detectable effect. BUR6 and BUR3/MOT1 have different functions depending on promoter context: although the bur3-1 and bur6-1 mutations increase transcription from delta uas promoters, they result in reduced transcription from the wild-type GAL1 and GAL10 promoters. This transcriptional defect is due to the inability of the GAL10 UAS to function in bur6-1 strains. The similar phenotypes of bur6 and bur3 (mot1) mutations suggest that Bur6p and Mot1p have related, but not identical, functions in modulating the activity of the general transcription machinery in vivo.


2020 ◽  
Vol 71 (17) ◽  
pp. 5237-5246
Author(s):  
Burcu Nur Keçeli ◽  
Chunlian Jin ◽  
Daniel Van Damme ◽  
Danny Geelen

Abstract The loading and maintenance of centromeric histone 3 (CENH3) at the centromere are critical processes ensuring appropriate kinetochore establishment and equivalent segregation of the homologous chromosomes during cell division. CENH3 loss of function is lethal, whereas mutations in the histone fold domain are tolerated and lead to chromosome instability and chromosome elimination in embryos derived from crosses with wild-type pollen. A wide range of proteins in yeast and animals have been reported to interact with CENH3. The histone fold domain-interacting proteins are potentially alternative targets for the engineering of haploid inducer lines, which may be important when CENH3 mutations are not well supported by a given crop. Here, we provide an overview of the corresponding plant orthologs or functional homologs of CENH3-interacting proteins. We also list putative CENH3 post-translational modifications that are also candidate targets for modulating chromosome stability and inheritance.


Plants ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 406 ◽  
Author(s):  
Nerina Gnesutta ◽  
Matteo Chiara ◽  
Andrea Bernardini ◽  
Matteo Balestra ◽  
David S. Horner ◽  
...  

Nuclear Factor Y (NF-Y) is an evolutionarily conserved trimer formed by a Histone-Fold Domain (HFD) heterodimeric module shared by core histones, and the sequence-specific NF-YA subunit. In plants, the genes encoding each of the three subunits have expanded in number, giving rise to hundreds of potential trimers. While in mammals NF-Y binds a well-characterized motif, with a defined matrix centered on the CCAAT box, the specificity of the plant trimers has yet to be determined. Here we report that Arabidopsis thaliana NF-Y trimeric complexes, containing two different NF-YA subunits, bind DNA in vitro with similar affinities. We assayed precisely sequence-specificity by saturation mutagenesis, and analyzed genomic DNA sites bound in vivo by selected HFDs. The plant NF-Y CCAAT matrix is different in nucleotides flanking CCAAT with respect to the mammalian matrix, in vitro and in vivo. Our data point to flexible DNA-binding rules by plant NF-Ys, serving the scope of adapting to a diverse audience of genomic motifs.


2008 ◽  
Vol 29 (2) ◽  
pp. 538-546 ◽  
Author(s):  
Pu-Yeh Kan ◽  
Tamara L. Caterino ◽  
Jeffrey J. Hayes

ABSTRACT The condensation of nucleosome arrays into higher-order secondary and tertiary chromatin structures likely involves long-range internucleosomal interactions mediated by the core histone tail domains. We have characterized interarray interactions mediated by the H4 tail domain, known to play a predominant role in the formation of such structures. We find that the N-terminal end of the H4 tail mediates interarray contacts with DNA during self-association of oligonucleosome arrays similar to that found previously for the H3 tail domain. However, a site near the histone fold domain of H4 participates in a distinct set of interactions, contacting both DNA and H2A in condensed structures. Moreover, we also find that H4-H2A interactions occur via an intra- as well as an internucleosomal fashion, supporting an additional intranucleosomal function for the tail. Interestingly, acetylation of the H4 tail has little effect on interarray interactions by itself but overrides the strong stimulation of interarray interactions induced by linker histones. Our results indicate that the H4 tail facilitates secondary and tertiary chromatin structure formation via a complex array of potentially exclusive interactions that are distinct from those of the H3 tail domain.


2002 ◽  
Vol 22 (21) ◽  
pp. 7553-7561 ◽  
Author(s):  
Danielle Vermaak ◽  
Hillary S. Hayden ◽  
Steven Henikoff

ABSTRACT Centromeres require specialized nucleosomes; however, the mechanism of localization is unknown. Drosophila sp. centromeric nucleosomes contain the Cid H3-like protein. We have devised a strategy for identifying elements within Cid responsible for its localization to centromeres. By expressing Cid from divergent Drosophila species fused to green fluorescent protein in Drosophila melanogaster cells, we found that D. bipectinata Cid fails to localize to centromeres. Cid chimeras consisting of the D. bipectinata histone fold domain (HFD) replaced with segments from D. melanogaster identified loop I of the HFD as being critical for targeting to centromeres. Conversely, substitution of D. bipectinata loop I into D. melanogaster abolished centromeric targeting. In either case, loop I was the only segment capable of conferring targeting. Within loop I, we identified residues that are critical for targeting. Most mutations of conserved residues abolished targeting, and length reductions were deleterious. Taken together with the fact that H3 loop I makes numerous contacts with DNA and with the adaptive evolution of Cid, our results point to the importance of DNA specificity for targeting. We suggest that the process of deposition of (Cid.H4)2 tetramers allows for discriminating contacts to be made between loop I and DNA, providing the specificity needed for targeting.


Sign in / Sign up

Export Citation Format

Share Document