Nitrous Oxide Emissions from Agricultural Farms and Its Contribution to Global Warming

Author(s):  
Haile Arefayne Shishaye
Soil Research ◽  
2003 ◽  
Vol 41 (2) ◽  
pp. 165 ◽  
Author(s):  
Ram C. Dalal ◽  
Weijin Wang ◽  
G. Philip Robertson ◽  
William J. Parton

Increases in the concentrations of greenhouse gases, carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and halocarbons in the atmosphere due to human activities are associated with global climate change. The concentration of N2O has increased by 16% since 1750. Although atmospheric concentration of N2O is much smaller (314 ppb in 1998) than of CO2 (365 ppm), its global warming potential (cumulative radiative forcing) is 296 times that of the latter in a 100-year time horizon. Currently, it contributes about 6% of the overall global warming effect but its contribution from the agricultural sector is about 16%. Of that, almost 80% of N2O is emitted from Australian agricultural lands, originating from N fertilisers (32%), soil disturbance (38%), and animal waste (30%). Nitrous oxide is primarily produced in soil by the activities of microorganisms during nitrification, and denitrification processes. The ratio of N2O to N2 production depends on oxygen supply or water-filled pore space, decomposable organic carbon, N substrate supply, temperature, and pH and salinity. N2O production from soil is sporadic both in time and space, and therefore, it is a challenge to scale up the measurements of N2O emission from a given location and time to regional and national levels.Estimates of N2O emissions from various agricultural systems vary widely. For example, in flooded rice in the Riverina Plains, N2O emissions ranged from 0.02% to 1.4% of fertiliser N applied, whereas in irrigated sugarcane crops, 15.4% of fertiliser was lost over a 4-day period. Nitrous oxide emissions from fertilised dairy pasture soils in Victoria range from 6 to 11 kg N2O-N/ha, whereas in arable cereal cropping, N2O emissions range from <0.01% to 9.9% of N fertiliser applications. Nitrous oxide emissions from soil nitrite and nitrates resulting from residual fertiliser and legumes are rarely studied but probably exceed those from fertilisers, due to frequent wetting and drying cycles over a longer period and larger area. In ley cropping systems, significant N2O losses could occur, from the accumulation of mainly nitrate-N, following mineralisation of organic N from legume-based pastures. Extensive grazed pastures and rangelands contribute annually about 0.2 kg N/ha as N2O (93 kg/ha per year CO2-equivalent). Tropical savannas probably contribute an order of magnitude more, including that from frequent fires. Unfertilised forestry systems may emit less but the fertilised plantations emit more N2O than the extensive grazed pastures. However, currently there are limited data to quantify N2O losses in systems under ley cropping, tropical savannas, and forestry in Australia. Overall, there is a need to examine the emission factors used in estimating national N2O emissions; for example, 1.25% of fertiliser or animal-excreted N appearing as N2O (IPCC 1996). The primary consideration for mitigating N2O emissions from agricultural lands is to match the supply of mineral N (from fertiliser applications, legume-fixed N, organic matter, or manures) to its spatial and temporal needs by crops/pastures/trees. Thus, when appropriate, mineral N supply should be regulated through slow-release (urease and/or nitrification inhibitors, physical coatings, or high C/N ratio materials) or split fertiliser application. Also, N use could be maximised by balancing other nutrient supplies to plants. Moreover, non-legume cover crops could be used to take up residual mineral N following N-fertilised main crops or mineral N accumulated following legume leys. For manure management, the most effective practice is the early application and immediate incorporation of manure into soil to reduce direct N2O emissions as well as secondary emissions from deposition of ammonia volatilised from manure and urine.Current models such as DNDC and DAYCENT can be used to simulate N2O production from soil after parameterisation with the local data, and appropriate modification and verification against the measured N2O emissions under different management practices.In summary, improved estimates of N2O emission from agricultural lands and mitigation options can be achieved by a directed national research program that is of considerable duration, covers sampling season and climate, and combines different techniques (chamber and micrometeorological) using high precision analytical instruments and simulation modelling, under a range of strategic activities in the agriculture sector.


Ecosystems ◽  
2015 ◽  
Vol 18 (6) ◽  
pp. 1000-1013 ◽  
Author(s):  
Scott C. Neubauer ◽  
J. Patrick Megonigal

Abstract For decades, ecosystem scientists have used global warming potentials (GWPs) to compare the radiative forcing of various greenhouse gases to determine if ecosystems have a net warming or cooling effect on climate. On a conceptual basis, the continued use of GWPs by the ecological community may be untenable because the use of GWPs requires the implicit assumption that greenhouse gas emissions occur as a single pulse; this assumption is rarely justified in ecosystem studies. We present two alternate metrics—the sustained-flux global warming potential (SGWP, for gas emissions) and the sustained-flux global cooling potential (SGCP, for gas uptake)—for use when gas fluxes persist over time. The SGWP is generally larger than the GWP (by up to ~40%) for both methane and nitrous oxide emissions, creating situations where the GWP and SGWP metrics could provide opposing interpretations about the climatic role of an ecosystem. Further, there is an asymmetry in methane and nitrous oxide dynamics between persistent emission and uptake situations, producing very different values for the SGWP vs. SGCP and leading to the conclusion that ecosystems that take up these gases are very effective at reducing radiative forcing. Although the new metrics are more realistic than the GWP for ecosystem fluxes, we further argue that even these metrics may be insufficient in the context of trying to understand the lifetime climatic role of an ecosystem. A dynamic modeling approach that has the flexibility to account for temporally variable rates of greenhouse gas exchange, and is not limited by a fixed time frame, may be more informative than the SGWP, SGCP, or GWP. Ultimately, we hope this article will stimulate discussion within the ecosystem science community about the most appropriate way(s) of assessing the role of ecosystems as regulators of global climate.


2021 ◽  
Vol 288 ◽  
pp. 112304
Author(s):  
Mónica Montoya ◽  
Antonio Vallejo ◽  
Mario Corrochano-Monsalve ◽  
Eduardo Aguilera ◽  
Alberto Sanz-Cobena ◽  
...  

2011 ◽  
Vol 37 (9) ◽  
pp. 1666-1675
Author(s):  
Hai-Ming TANG ◽  
Xiao-Ping XIAO ◽  
Wen-Guang TANG ◽  
Guang-Li YANG

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Khadim Dawar ◽  
Shah Fahad ◽  
M. M. R. Jahangir ◽  
Iqbal Munir ◽  
Syed Sartaj Alam ◽  
...  

AbstractIn this study, we explored the role of biochar (BC) and/or urease inhibitor (UI) in mitigating ammonia (NH3) and nitrous oxide (N2O) discharge from urea fertilized wheat cultivated fields in Pakistan (34.01°N, 71.71°E). The experiment included five treatments [control, urea (150 kg N ha−1), BC (10 Mg ha−1), urea + BC and urea + BC + UI (1 L ton−1)], which were all repeated four times and were carried out in a randomized complete block design. Urea supplementation along with BC and BC + UI reduced soil NH3 emissions by 27% and 69%, respectively, compared to sole urea application. Nitrous oxide emissions from urea fertilized plots were also reduced by 24% and 53% applying BC and BC + UI, respectively, compared to urea alone. Application of BC with urea improved the grain yield, shoot biomass, and total N uptake of wheat by 13%, 24%, and 12%, respectively, compared to urea alone. Moreover, UI further promoted biomass and grain yield, and N assimilation in wheat by 38%, 22% and 27%, respectively, over sole urea application. In conclusion, application of BC and/or UI can mitigate NH3 and N2O emissions from urea fertilized soil, improve N use efficiency (NUE) and overall crop productivity.


Eos ◽  
2008 ◽  
Vol 89 (51) ◽  
pp. 529 ◽  
Author(s):  
Stephen J. Del Grosso ◽  
Tom Wirth ◽  
Stephen M. Ogle ◽  
William J. Parton

2021 ◽  
Author(s):  
Debasish Saha ◽  
Jason P. Kaye ◽  
Arnab Bhowmik ◽  
Mary Ann Bruns ◽  
John M. Wallace ◽  
...  

2021 ◽  
Author(s):  
Arezoo Taghizadeh-Toosi ◽  
Baldur Janz ◽  
Rodrigo Labouriau ◽  
Jørgen E. Olesen ◽  
Klaus Butterbach-Bahl ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document