Developments of the Godunov Method: Explicit–Implicit Scheme, Aeroacoustics

Author(s):  
Igor Menshov
2016 ◽  
Vol 11 (1) ◽  
pp. 119-126 ◽  
Author(s):  
A.A. Aganin ◽  
N.A. Khismatullina

Numerical investigation of efficiency of UNO- and TVD-modifications of the Godunov method of the second order accuracy for computation of linear waves in an elastic body in comparison with the classical Godunov method is carried out. To this end, one-dimensional cylindrical Riemann problems are considered. It is shown that the both modifications are considerably more accurate in describing radially converging as well as diverging longitudinal and shear waves and contact discontinuities both in one- and two-dimensional problem statements. At that the UNO-modification is more preferable than the TVD-modification because exact implementation of the TVD property in the TVD-modification is reached at the expense of “cutting” solution extrema.


2021 ◽  
Vol 36 (3) ◽  
pp. 165-176
Author(s):  
Kirill Nikitin ◽  
Yuri Vassilevski ◽  
Ruslan Yanbarisov

Abstract This work presents a new approach to modelling of free surface non-Newtonian (viscoplastic or viscoelastic) fluid flows on dynamically adapted octree grids. The numerical model is based on the implicit formulation and the staggered location of governing variables. We verify our model by comparing simulations with experimental and numerical results known from the literature.


2021 ◽  
Vol 11 (12) ◽  
pp. 5509
Author(s):  
Hongjin Choi ◽  
Seonghwan Choi ◽  
Soo-Chang Kang ◽  
Myoung-Gyu Lee

A fully implicit stress integration algorithm is developed for the distortional hardening model, namely the e−HAH model, capable of simulating cross−hardening/softening under orthogonal loading path changes. The implicit algorithm solves a complete set of residuals as nonlinear functions of stress, a microstructure deviator, and plastic state variables of the constitutive model, and provides a consistent tangent modulus. The number of residuals is set to be 20 or 14 for the continuum or shell elements, respectively. Comprehensive comparison programs are presented regarding the predictive accuracy and stability with different numerical algorithms, strain increments, material properties, and loading conditions. The flow stress and r−value evolutions under reverse/cross−loading conditions prove that the algorithm is robust and accurate, even with large strain increments. By contrast, the cutting−plane method and partially implicit Euler backward method, which are characterized by a reduced number of residuals, result in unstable responses under abrupt loading path changes. Finally, the algorithm is implemented into the finite element modeling of large−size, S−rail forming and the springback for two automotive steel sheets, which is often solved by a hybrid dynamic explicit–implicit scheme. The fully implicit algorithm performs well for the whole simulation with the solely static implicit scheme.


2021 ◽  
Vol 154 (22) ◽  
pp. 224114
Author(s):  
Jannis Krumland ◽  
Gabriel Gil ◽  
Stefano Corni ◽  
Caterina Cocchi

1994 ◽  
Vol 98 (979) ◽  
pp. 325-339 ◽  
Author(s):  
E. F. Toro ◽  
A. Chakraborty

Abstract An improved version (HLLC) of the Harten, Lax, van Leer Riemann solver (HLL) for the steady supersonic Euler equations is presented. Unlike the HLL, the HLLC version admits the presence of the slip line in the structure of the solution. This leads to enhanced resolution of computed slip lines by Godunov type methods. We assess the HLLC solver in the context of the first order Godunov method and the second order weighted average flux method (WAF). It is shown that the improvement embodied in the HLLC solver over the HLL solver is virtually equivalent to incorporating the exact Riemann solver.


Sign in / Sign up

Export Citation Format

Share Document