Issues Related to Subgroup Analyses and Use of Intensive Stratification

Author(s):  
Lu Cui ◽  
Tu Xu ◽  
Lanju Zhang
Keyword(s):  
2004 ◽  
Author(s):  
Kathleen Bentein ◽  
Robert J. Vandenberg ◽  
Christian Vandenberghe ◽  
Florence Stinglhamber

2016 ◽  
Author(s):  
Kenneth G Saag ◽  
Peter Alexandersen ◽  
Claude-Laurent Benhamou ◽  
Nigel Gilchrist ◽  
Johan Halse ◽  
...  

2019 ◽  
Vol 25 (30) ◽  
pp. 3266-3281 ◽  
Author(s):  
Hadis Fathizadeh ◽  
Alireza Milajerdi ◽  
Željko Reiner ◽  
Fariba Kolahdooz ◽  
Maryam Chamani ◽  
...  

Background: The findings of trials investigating the effects of L-carnitine administration on serum lipids are inconsistent. This meta-analysis of randomized controlled trials (RCTs) was performed to summarize the effects of L-carnitine intake on serum lipids in patients and healthy individuals. Methods: Two authors independently searched electronic databases including MEDLINE, EMBASE, Cochrane Library, Web of Science, PubMed and Google Scholar from 1990 until August 1, 2019, in order to find relevant RCTs. The quality of selected RCTs was evaluated using the Cochrane Collaboration risk of bias tool. Cochrane’s Q test and I-square (I2) statistic were used to determine the heterogeneity across included trials. Weight mean difference (SMD) and 95% CI between the two intervention groups were used to determine pooled effect sizes. Subgroup analyses were performed to evaluate the source of heterogeneity based on suspected variables such as, participant’s health conditions, age, dosage of L-carnitine, duration of study, sample size, and study location between primary RCTs. Results: Out of 3460 potential papers selected based on keywords search, 67 studies met the inclusion criteria and were eligible for the meta-analysis. The pooled results indicated that L-carnitine administration led to a significant decrease in triglycerides (WMD: -10.35; 95% CI: -16.43, -4.27), total cholesterol (WMD: -9.47; 95% CI: - 13.23, -5.70) and LDL-cholesterol (LDL-C) concentrations (WMD: -6.25; 95% CI: -9.30, -3.21), and a significant increase in HDL-cholesterol (HDL-C) levels (WMD: 1.39; 95% CI: 0.21, 2.57). L-carnitine supplementation did not influence VLDL-cholesterol concentrations. When we stratified studies for the predefined factors such as dosage, and age, no significant effects of the intervention on triglycerides, LDL-C, and HDL-C levels were found. Conclusion: This meta-analysis demonstrated that L-carnitine administration significantly reduced triglycerides, total cholesterol and LDL-cholesterol levels, and significantly increased HDL-cholesterol levels in the pooled analyses, but did not affect VLDL-cholesterol levels; however, these findings were not confirmed in our subgroup analyses by participant’s health conditions, age, dosage of L-carnitine, duration of study, sample size, and study location.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 947.1-947
Author(s):  
K. S. K. MA ◽  
L. T. Wang

Background:Juvenile Idiopathic Arthritis (JIA), an autoimmune disease, has been proposed to be comorbid with obstructive sleep apnea (OSA).Objectives:We aimed at identifying the relationship between JIA and OSA.Methods:We performed a cohort study including JIA and OSA patients from 1999 to 2013. A total of 2791 patients diagnosed with OSA after JIA onset were recruited, which 11,164 eligible individuals without JIA history were selected as matched-controls. A Cox proportional hazard model was developed to estimate the risk of OSA in JIA patients. A cumulative probability model was adopted to assess the time-dependent effect of JIA on OSA development, implying the casual link of the association. To identify whether JIA patients have higher risks for developing temporomandibular joint (TMJ) disorders, craniofacial anomalies and deformities than non-JIA individuals, subgroup analyses was conducted. Finally, Ingenuity Systems Pathway Analysis (IPA) was conducted to identify underlying mechanisms of the above disease correlation among peripheral blood mononuclear cells (PBMCs) from rheumatic factor (RF)-positive and RF-negative JIA patients, and subcutaneous fat tissues from OSA patients, using p-value visualization for RNA-seq analyses.Results:The Cox proportional hazard model showed that JIA patients were more likely to have OSA than non-JIA individuals (adjusted hazard ratio =1.949, 95% CI =1.264–3.005). The incidence of developing OSA was particularly high among patients who developed JIA aged 18-30 years old (aHR= 2.034, 95% CI=1.305-3.169) and males (aHR=1.82, 95% CI=1.121-2.954). The risk of developing OSA increased within 0-36 months (aHR = 2.216, 95% CI = 1.001 – 4.907) and over 60 months (aHR = 2.558, 95% CI = 1.346 – 4.860) of follow-up duration after JIA onset. Subgroup analyses showed that JIA patients were more likely to have TMJ disorders (relative risk = 2.047, 95% CI = 1.446-2.898) and to receive treatment for craniofacial deformities (RR = 1.722, 95% CI = 1.38-2.148) than non-JIA controls. IPA analyses suggested that the underlying mechanisms involved activation of antigen presentation pathway followed by antigen presentation to CD4+ and CD8+ T lymphocytes, as well as B cell development.Conclusion:Our findings identified high risks of developing OSA, TMJ disorders, and craniofacial deformities following JIA onset, which the underlying mechanisms may involve both cellular and humoral immunity.Disclosure of Interests:None declared


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 110.1-110
Author(s):  
S. Nysom Christiansen ◽  
F. C. Müller ◽  
M. Ǿstergaard ◽  
O. Slot ◽  
J. Møllenbach Møller ◽  
...  

Background:Dual energy CT (DECT) has diagnostic potential in gout patients. DECT can automatically colour-code presumed urate deposits based on radiodensity (Hounsfield Units, HU) and DECT ratio (difference in attenuation between high and low kV series) of lesions. However, other materials may imitate properties of urate deposits, most importantly calcium-containing material, dense tendons and artefacts, which may lead to misinterpretations. The characteristics of DECT lesions in gout patients have not yet been systematically investigated.Objectives:To evaluate the properties and locations of colour-coded DECT lesions in gout patients.Methods:DECT were performed in patients with suspected gout. Patients were separated into gout and non-gout patients based on joint fluid microscopy findings. DECT of the hands, knees and feet were performed using default gout settings and colour-coded lesions were registered. Only location-relevant lesions were analysed (e.g. nail bed artefacts excluded). Mean density (mean of HU at 80 kV and Sn150 kV), mean DECT ratio, size and location of each lesion was determined.Subgroup analysis was performed post-hoc evaluating potential differences in properties and locations of lesions. Lesions were separated into groups according to properties (Figure 1, grey box): 1)Size—to separate artefacts characterised by small volume (possible artefacts). 2)DECT ratios—to separate calcium-containing material characterised by high DECT ratio (possible calcium-containing material). 3)Density—to separate dense tendons characterised by low DECT ratio and low HU values (possible dense tendons). Lesion fulfilling all urate characteristics (large volume, low DECT ratio, high density) were labelleddefinite urate deposits. Finally, for non-gout patients, properties ofnon-gout urate-imitation lesions(properties asdefinite urate deposits) were analysed.Results:In total, 3918 lesions (all lesions) were registered in gout patients (n=23), with mean DECT ratio 1.06 (SD 0.13), median density 160.6 HU and median size 6 voxels (Figure 1, blue box). Lesions were seen in all analysed joints, most frequently MTP1 joints (medial side), knee joints and midtarsal joints (Figure 2a). Tendon affections were also common, especially in the knee tendons (patella and quadriceps), malleolus-related tendons (e.g. peroneus and tibialis posterior) and the Achilles tendons (Figure 2a).Subgroup analyses showed thatdefinite urate deposits(figure 2b) were found at the same locations asall lesionin gout patients (figure 2a), with the four most common sites being MTP1 joints, midtarsal joints, and quadriceps and patella tendons (Figure 2b).Possible dense tendonlesions had a mean HU value of 156.5 HU—markedly higher than expected for dense tendons (<100HU)—and lesion-locations were similar todefinite urate deposits(data not shown), indicating that they primarily consisted of true urate deposits. In contrast,possible calcium-containing materialandnon-gout urate-imitating lesionshad distinctly different properties (ratios 1.33 and 1.20, respectively) (Figure 1, yellow and orange box). Furthermore, the locations of these lesions were different fromdefinite urate depositssince they were primarily found in a few weight-bearing joints (knee, midtarsal and talocrural including malleolus regions) and tendons (Achilles and quadriceps), whereas no lesions were found in either MTP1 joints or patella tendons (figure 2c).Conclusion:DECT color-coded lesions in gout patients are heterogeneous in properties and locations. Subgroup analyses found that locations such as MTP1 joints and patella tendons were characterised by almost only showingdefinite urate deposits. A sole focus on these regions in the evaluation of gout patients may therefore improve specificity of DECT scans.Disclosure of Interests:Sara Nysom Christiansen Speakers bureau: SNC has received speaker fees from Bristol Myers Squibb (BMS) and General Electric (GE)., Felix C Müller Employee of: Siemens Healthineers., Mikkel Ǿstergaard Grant/research support from: AbbVie, Bristol-Myers Squibb, Celgene, Merck, and Novartis, Consultant of: AbbVie, Bristol-Myers Squibb, Boehringer Ingelheim, Celgene, Eli Lilly, Hospira, Janssen, Merck, Novartis, Novo Nordisk, Orion, Pfizer, Regeneron, Roche, Sandoz, Sanofi, and UCB, Speakers bureau: AbbVie, Bristol-Myers Squibb, Boehringer Ingelheim, Celgene, Eli Lilly, Hospira, Janssen, Merck, Novartis, Novo Nordisk, Orion, Pfizer, Regeneron, Roche, Sandoz, Sanofi, and UCB, Ole Slot: None declared, Jakob Møllenbach Møller: None declared, Henrik F Børgesen: None declared, Kasper K Gosvig: None declared, Lene Terslev Speakers bureau: LT declares speakers fees from Roche, MSD, BMS, Pfizer, AbbVie, Novartis, and Janssen.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhongyi Chen ◽  
Zhaosheng Ding ◽  
Caixia Chen ◽  
Yangfan Sun ◽  
Yuyu Jiang ◽  
...  

Abstract Background Comprehensive geriatric assessment (CGA) interventions can improve functional ability and reduce mortality in older adults, but the effectiveness of CGA intervention on the quality of life, caregiver burden, and length of hospital stay remains unclear. The study aimed to determine the effectiveness of CGA intervention on the quality of life, length of hospital stay, and caregiver burden in older adults by conducting meta-analyses of randomised controlled trials (RCTs). Methods A literature search in PubMed, Embase, and Cochrane Library was conducted for papers published before February 29, 2020, based on inclusion criteria. Standardised mean difference (SMD) or mean difference (MD) with 95% confidence intervals (CIs) was calculated using the random-effects model. Subgroup analyses, sensitivity analyses, and publication bias analyses were also conducted. Results A total of 28 RCTs were included. Overall, the intervention components common in different CGA intervention models were interdisciplinary assessments and team meetings. Meta-analyses showed that CGA interventions improved the quality of life of older people (SMD = 0.12; 95% CI = 0.03 to 0.21; P = 0.009) compared to usual care, and subgroup analyses showed that CGA interventions improved the quality of life only in participants’ age > 80 years and at follow-up ≤3 months. The change value of quality of life in the CGA intervention group was better than that in the usual care group on six dimensions of the 36-Item Short-Form Health Survey questionnaire (SF-36). Also, compared to usual care, the CGA intervention reduced the caregiver burden (SMD = − 0.56; 95% CI = − 0.97 to − 0.15, P = 0.007), but had no significant effect on the length of hospital stay. Conclusions CGA intervention was effective in improving the quality of life and reducing caregiver burden, but did not affect the length of hospital stay. It is recommended that future studies apply the SF-36 to evaluate the impact of CGA interventions on the quality of life and provide supportive strategies for caregivers as an essential part of the CGA intervention, to find additional benefits of CGA interventions.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Sung-Hee Oh ◽  
Hyemin Ku ◽  
Kang Seo Park

Abstract Background Diabetes leads to severe complications and imposes health and financial burdens on the society. However, currently existing domestic public health studies of diabetes in South Korea mainly focus on prevalence, and data on the nationwide burden of diabetes in South Korea are lacking. The study aimed to estimate the prevalence and economic burden of diabetes imposed on the South Korean society. Methods A prevalence-based cost-of-illness study was conducted using the Korean national claims database. Adult diabetic patients were defined as those aged ≥20 years with claim records containing diagnostic codes for diabetes (E10-E14) during at least two outpatient visits or one hospitalization. Direct costs included medical costs for the diagnosis and treatment of diabetes and transportation costs. Indirect costs included productivity loss costs due to morbidity and premature death and caregivers’ costs. Subgroup analyses were conducted according to the type of diabetes, age (< 65 vs. ≥65), diabetes medication, experience of hospitalization, and presence of diabetic complications or related comorbidities. Results A total of 4,472,133 patients were diagnosed with diabetes in Korea in 2017. The average annual prevalence of diabetes was estimated at 10.7%. The diabetes-related economic burden was USD 18,293 million, with an average per capita cost of USD 4090 in 2019. Medical costs accounted for the biggest portion of the total cost (69.5%), followed by productivity loss costs (17.9%), caregivers’ costs (10.2%), and transportation costs (2.4%). According to subgroup analyses, type 2 diabetes, presence of diabetic complications or related comorbidities, diabetes medication, and hospitalization represented the biggest portion of the economic burden for diabetes. As the number of complications increased from one to three or more, the per capita cost increased from USD 3991 to USD 11,965. In inpatient settings, the per capita cost was ~ 10.8 times higher than that of outpatient settings. Conclusions South Korea has a slightly high prevalence and economic burden of diabetes. These findings highlight the need for effective strategies to manage diabetic patients and suggest that policy makers allocate more health care resources to diabetes. This is the first study on this topic, conducted using a nationally representative claims database in South Korea.


Sign in / Sign up

Export Citation Format

Share Document