Soil Health Management Through Low Cost Biochar Technology

Author(s):  
Shaon Kumar Das ◽  
Goutam Kumar Ghosh

Soil Systems ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 32
Author(s):  
Haddish Melakeberhan ◽  
Gregory Bonito ◽  
Alexandra N. Kravchenko

Soil health connotes the balance of biological, physicochemical, nutritional, structural, and water-holding components necessary to sustain plant productivity. Despite a substantial knowledge base, achieving sustainable soil health remains a goal because it is difficult to simultaneously: (i) improve soil structure, physicochemistry, water-holding capacity, and nutrient cycling; (ii) suppress pests and diseases while increasing beneficial organisms; and (iii) improve biological functioning leading to improved biomass/crop yield. The objectives of this review are (a) to identify agricultural practices (APs) driving soil health degradations and barriers to developing sustainable soil health, and (b) to describe how the nematode community analyses-based soil food web (SFW) and fertilizer use efficiency (FUE) data visualization models can be used towards developing sustainable soil health. The SFW model considers changes in beneficial nematode population dynamics relative to food and reproduction (enrichment index, EI; y-axis) and resistance to disturbance (structure index, SI; x-axis) in order to identify best-to-worst case scenarios for nutrient cycling and agroecosystem suitability of AP-driven outcomes. The FUE model visualizes associations between beneficial and plant-parasitic nematodes (x-axis) and ecosystem services (e.g., yield or nutrients, y-axis). The x-y relationship identifies best-to-worst case scenarios of the outcomes for sustainability. Both models can serve as platforms towards developing integrated and sustainable soil health management strategies on a location-specific or a one-size-fits-all basis. Future improvements for increased implementation of these models are discussed.



Author(s):  
Diego Garcia ◽  
Hever Moncayo ◽  
Andres Perez ◽  
Chirag Jain


Diversity ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 101
Author(s):  
Haddish Melakeberhan ◽  
ZinThuZar Maung ◽  
Isaac Lartey ◽  
Senol Yildiz ◽  
Jenni Gronseth ◽  
...  

Determining if the vast soil health degradations across the seven major soil groups (orders) of Sub-Saharan Africa (SSA) can be managed on the basis of a one-size-fits-all or location-specific approach is limited by a lack of soil group-based understanding of soil health degradations. We used the relationship between changes in nematode population dynamics relative to food and reproduction (enrichment, EI) and resistance to disturbance (structure, SI) indices to characterize the soil food web (SFW) and soil health conditions of Ferralsol, Lithosol and Nitosol soil groups in Ghana, Kenya and Malawi. We applied bivariate correlations of EI, SI, soil pH, soil organic carbon (SOC), and texture (sand, silt and clay) to identify integrated indicator parameters, and principal component analysis (PCA) to determine how all measured parameters, soil groups, and countries align. A total of 512 georeferenced soil samples from disturbed (agricultural) and undisturbed (natural vegetation) landscapes were analyzed. Nematode trophic group abundance was low and varied by soil group, landscape and country. The resource-limited and degraded SFW conditions separated by soil groups and by country. EI and SI correlation with SOC varied by landscape, soil group or country. PCA alignment showed separation of soil groups within and across countries. The study developed the first biophysicochemical proof-of-concept that the soil groups need to be treated separately when formulating scalable soil health management strategies in SSA.



Author(s):  
Devin Bourgeois ◽  
Anu G. Bourgeois ◽  
Ashwin Ashok
Keyword(s):  
Low Cost ◽  


2020 ◽  
pp. 219-241
Author(s):  
Sanjeev Kumar ◽  
Samiksha ◽  
Premasis Sukul


2016 ◽  
Vol 4 (12) ◽  
pp. 110-123
Author(s):  
Amrit Patel

World has been observing 5th December since 2012 as the World Soil Day to ensure maintenance of soil health, This was complimented by the United Nations’ General Assembly declaring 2015, as the International Year of Soils to create awareness among all stakeholders and promote more sustainable use of soil being the critical resource. On this occasion, UN Secretary General, Ban Ki-moon had said that without healthy soils life on Earth would be unsustainable. Indeed, soils are the foundation of agriculture. He had urged all Governments to pledge to do more to protect this important yet forgotten resource. A healthy life is not possible without healthy soils. According to the Director General of the FAO, Jose Graziano da Silva, today, world has more than 805 million people facing hunger and malnutrition. Soils are under increased pressure because population growth will require an approximately increase of 60 per cent in food output and competing land uses.Unfortunately, 33 per cent of our global soil resources are under degradation and human pressures on soils are reaching critical limits, reducing and sometimes eliminating essential soil functions. He had emphasised the role of all stakeholders in promoting the cause of soils as it is important for paving the road towards a real sustainable development for all and by all. Against this background, this article briefly highlights the significance and aspects of soil health management in India and suggests aspects of strategic action plan to conserve this precious resource for the benefit of mankind.



2011 ◽  
pp. 118-131 ◽  
Author(s):  
Anastasia N. Kastania ◽  
Sophia Kossida

The electronic healthcare in the modern society has the possibility of converting the practice of delivery of health care. Currently, chaos of information is characterizing the public health care, which leads to inferior decision-making, increasing expenses and even loss of lives. Technological progress in the sensors, integrated circuits, and the wireless communications have allowed designing low cost, microscopic, light, and smart sensors. These smart sensors are able to feel, transport one or more vital signals, and they can be incorporated in wireless personal or body networks for remote health monitoring. Sensor networks promise to drive innovation in health care allowing cheap, continuous, mobile and personalized health management of electronic health records with the Internet. The e-health applications imply an exciting set of requirements for Grid middleware and provide a rigorous testing ground for Grid. In the chapter, the authors present an overview of the current technological achievements in the electronic healthcare world combined with an outline of the quality dimensions in healthcare.



Agronomy ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 212 ◽  
Author(s):  
Roxanne Stiglitz ◽  
Elena Mikhailova ◽  
Julia Sharp ◽  
Christopher Post ◽  
Mark Schlautman ◽  
...  

Sensor technology can be a reliable and inexpensive means of gathering soils data for soil health assessment at the farm scale. This study demonstrates the use of color system readings from the Nix ProTM color sensor (Nix Sensor Ltd., Hamilton, ON, Canada) to predict soil organic carbon (SOC) as well as total nitrogen (TN) in variable, glacial till soils at the 147 ha Cornell University Willsboro Research Farm, located in Upstate New York, USA. Regression analysis was conducted using the natural log of SOC (lnSOC) and the natural log of TN (lnTN) as dependent variables, and sample depth and color data were used as predictors for 155 air dried soil samples. Analysis was conducted for combined samples, Alfisols, and Entisols as separate sample sets and separate models were developed using depth and color variables, and color variables only. Depth and L* were significant predictors of lnSOC and lnTN for all sample sets. The color variable b* was not a significant predictor of lnSOC for any soil sample set, but it was for lnTN for all sample sets. The lnSOC prediction model for Alfisols, which included depth, had the highest R2 value (0.81, p-value < 0.001). The lnSOC model for Entisols, which contained only color variables, had the lowest R2 (0.62, p-value < 0.001). The results suggest that the Nix ProTM color sensor is an effective tool for the rapid assessment of SOC and TN content for these soils. With the accuracy and low cost of this sensor technology, it will be possible to greatly increase the spatial and temporal density of SOC and TN estimates, which is critical for soil management.



2007 ◽  
Vol 40 (8) ◽  
pp. 272-275
Author(s):  
Daniel Moga ◽  
Corneliu Rusu ◽  
Mihai Dumitrean ◽  
Rozica Moga ◽  
Adrian Muresan


Sign in / Sign up

Export Citation Format

Share Document