Recent Advances in Nanocarrier-Based Brain-Targeted Drug Delivery for Effective Treatment of Central Nervous System Disorders

2020 ◽  
pp. 187-203
Author(s):  
Amita Sarwal ◽  
Gurpreet Singh ◽  
Priya Prasad ◽  
Sachin Sharma ◽  
Waseem Ali
2020 ◽  
Vol 18 ◽  
Author(s):  
Vimal Patel ◽  
Vishal Chavda ◽  
Jigar Shah

: Neurology and associated nanotherapeutics is a complex field in terms of therapeutics and neurological disorder complexity. Brain is an intricate appendage and requires more precise embattled treatment for the particular diseases and hence it’s a broad scale for developing more targeted drug deliveries. The brain is one of the most inaccessible tissues of the body due to the existence of the blood-brain barrier (BBB), thus delivery of drugs inside the brain is a striking dare and it is also tricky to treat central nervous system (CNS) complications pharmacologically. The therapeutic aspiration is to accomplish a lowest drug meditation in the brain tissues so as to gain favoured therapeutic results. To devastate this obstacle, nanotechnology is engaged in the field of targeted brain drug delivery and neuropathology targeting. These carriers hold myriad ability as they may augment the drug delivery into the brain by shielding them from degradation and prolonging their transmission in the blood, as well as promoting their transport through the BBB. Nanopharmaceuticals are quickly sprouting as new avenue that is engaged with the drug-loaded nanocarriers to demonstrate unique physicochemical properties and tiny size range for penetrating into the central nervous system. The enchantment behind their therapeutic achievement is the condensed drug dose and inferior toxicity, whereby restricting the therapeutic compound to the specific site. Therefore, in this article we have tried to recapitulate the advances the novel scopes for the brain targeted drug delivery for complex neurological disorders.


2020 ◽  
Vol 20 (30) ◽  
pp. 2762-2776
Author(s):  
Xin Zhao ◽  
Yun Ye ◽  
Shuyu Ge ◽  
Pingping Sun ◽  
Ping Yu

Central nervous system (CNS) cancers are among the most common and treatment-resistant diseases. The main reason for the low treatment efficiency of the disorders is the barriers against targeted delivery of anticancer agents to the site of interest, including the blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB). BBB is a strong biological barrier separating circulating blood from brain extracellular fluid that selectively and actively prevents cytotoxic agents and majority of anticancer drugs from entering the brain. BBB and BBTB are the major impediments against targeted drug delivery into CNS tumors. Nanotechnology and its allied modalities offer interesting and effective delivery strategies to transport drugs across BBB to reach brain tissue. Integrating anticancer drugs into different nanocarriers improves the delivery performance of the resultant compounds across BBB. Surface engineering of nanovehicles using specific ligands, antibodies and proteins enhances the BBB crossing efficacy as well as selective and specific targeting to the target cancerous tissues in CNS tumors. Multifunctional nanoparticles (NPs) have brought revolutionary advances in targeted drug delivery to brain tumors. This study reviews the main anatomical, physiological and biological features of BBB and BBTB in drug delivery and the recent advances in targeting strategies in NPs-based drug delivery for CNS tumors. Moreover, we discuss advances in using specific ligands, antibodies, and surface proteins for designing and engineering of nanocarriers for targeted delivery of anticancer drugs to CNS tumors. Finally, the current clinical applications and the perspectives in the targeted delivery of therapeutic molecules and genes to CNS tumors are discussed.


2022 ◽  
pp. 502-517
Author(s):  
Dimitrios Kaloudas ◽  
Robert Penchovsky

This article describes how with the development of biotechnology, plants have gained again a prominent place as a relatively inexpensive source for the creation of recombinant pharmaceuticals. Plant-derived compounds have started playing a major role in the pharmaceutical industry with many plant-based products to have found their way in drugs and chemicals used for the treatment of different diseases and their symptoms. Plant-derived compounds have been tested for the treatment of several types of cancer, Central Nervous System disorders, as enhancers during chemotherapy and as vessels for targeted drug delivery. Genetically modified plant cells have been recruited for the production of therapeutic agencies as well as in the creation of expression systems for virus-like particles that could be used as vaccines. Moreover, microRNAs mimicking the plant ones have the ability to inhibit tumors in mammalian cells. This review describes plant-derived compounds and their properties as potential therapeutic agents and precursors for the development of novel drugs in the pharmaceutical industry.


Sign in / Sign up

Export Citation Format

Share Document