scholarly journals Targeted drug delivery to the peripheral nervous system using gene therapy

2012 ◽  
Vol 527 (2) ◽  
pp. 85-89 ◽  
Author(s):  
Darren Wolfe ◽  
Marina Mata ◽  
David J. Fink
2020 ◽  
Vol 18 ◽  
Author(s):  
Vimal Patel ◽  
Vishal Chavda ◽  
Jigar Shah

: Neurology and associated nanotherapeutics is a complex field in terms of therapeutics and neurological disorder complexity. Brain is an intricate appendage and requires more precise embattled treatment for the particular diseases and hence it’s a broad scale for developing more targeted drug deliveries. The brain is one of the most inaccessible tissues of the body due to the existence of the blood-brain barrier (BBB), thus delivery of drugs inside the brain is a striking dare and it is also tricky to treat central nervous system (CNS) complications pharmacologically. The therapeutic aspiration is to accomplish a lowest drug meditation in the brain tissues so as to gain favoured therapeutic results. To devastate this obstacle, nanotechnology is engaged in the field of targeted brain drug delivery and neuropathology targeting. These carriers hold myriad ability as they may augment the drug delivery into the brain by shielding them from degradation and prolonging their transmission in the blood, as well as promoting their transport through the BBB. Nanopharmaceuticals are quickly sprouting as new avenue that is engaged with the drug-loaded nanocarriers to demonstrate unique physicochemical properties and tiny size range for penetrating into the central nervous system. The enchantment behind their therapeutic achievement is the condensed drug dose and inferior toxicity, whereby restricting the therapeutic compound to the specific site. Therefore, in this article we have tried to recapitulate the advances the novel scopes for the brain targeted drug delivery for complex neurological disorders.


2016 ◽  
Vol 1 (01) ◽  
Author(s):  
Prachi Goyal ◽  
Kamani Parmar ◽  
Sonika Gupta ◽  
Mukesh Sharma ◽  
M. P. Dobhal ◽  
...  

Bimolecular-conjugated nanoparticles (NP) demonstrate unique properties with wide-ranging applications in the diagnosis of infectious diseases as well as application in gene therapy and drug delivery therapies. The unique properties and utility of NP arise from a variety of attributes, including the similar size of nanoparticles and biomolecules. Biological functions depend primarily on units that have nanoscale dimensions, such as viruses, ribosomes, molecular motors and components of the extra cellular matrix. In addition, engineered devices at the nanoscale are small enough to interact directly with sub-cellular compartments and to probe intracellular events. This review focuses on the methods of nanoparticle interaction with different biomolecules such as antibodies, DNA, lipids, and proteins. More specifically, there is discussion about bioconjugation linkage and a summary of potential biomedical applications of bio-conjugated nanoparticles as targeted drug delivery vehicles.


2020 ◽  
Vol 20 (30) ◽  
pp. 2762-2776
Author(s):  
Xin Zhao ◽  
Yun Ye ◽  
Shuyu Ge ◽  
Pingping Sun ◽  
Ping Yu

Central nervous system (CNS) cancers are among the most common and treatment-resistant diseases. The main reason for the low treatment efficiency of the disorders is the barriers against targeted delivery of anticancer agents to the site of interest, including the blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB). BBB is a strong biological barrier separating circulating blood from brain extracellular fluid that selectively and actively prevents cytotoxic agents and majority of anticancer drugs from entering the brain. BBB and BBTB are the major impediments against targeted drug delivery into CNS tumors. Nanotechnology and its allied modalities offer interesting and effective delivery strategies to transport drugs across BBB to reach brain tissue. Integrating anticancer drugs into different nanocarriers improves the delivery performance of the resultant compounds across BBB. Surface engineering of nanovehicles using specific ligands, antibodies and proteins enhances the BBB crossing efficacy as well as selective and specific targeting to the target cancerous tissues in CNS tumors. Multifunctional nanoparticles (NPs) have brought revolutionary advances in targeted drug delivery to brain tumors. This study reviews the main anatomical, physiological and biological features of BBB and BBTB in drug delivery and the recent advances in targeting strategies in NPs-based drug delivery for CNS tumors. Moreover, we discuss advances in using specific ligands, antibodies, and surface proteins for designing and engineering of nanocarriers for targeted delivery of anticancer drugs to CNS tumors. Finally, the current clinical applications and the perspectives in the targeted delivery of therapeutic molecules and genes to CNS tumors are discussed.


Sign in / Sign up

Export Citation Format

Share Document