New-Generation Silicon Photomultiplier-Based Clinical PET/CT and PET/MR Systems

2020 ◽  
pp. 41-51
Author(s):  
David F. C. Hsu ◽  
Craig S. Levin
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Johan Economou Lundeberg ◽  
Jenny Oddstig ◽  
Ulrika Bitzén ◽  
Elin Trägårdh

Abstract Background Lung cancer is one of the most common cancers in the world. Early detection and correct staging are fundamental for treatment and prognosis. Positron emission tomography with computed tomography (PET/CT) is recommended clinically. Silicon (Si) photomultiplier (PM)-based PET technology and new reconstruction algorithms are hoped to increase the detection of small lesions and enable earlier detection of pathologies including metastatic spread. The aim of this study was to compare the diagnostic performance of a SiPM-based PET/CT (including a new block-sequential regularization expectation maximization (BSREM) reconstruction algorithm) with a conventional PM-based PET/CT including a conventional ordered subset expectation maximization (OSEM) reconstruction algorithm. The focus was patients admitted for 18F-fluorodeoxyglucose (FDG) PET/CT for initial diagnosis and staging of suspected lung cancer. Patients were scanned on both a SiPM-based PET/CT (Discovery MI; GE Healthcare, Milwaukee, MI, USA) and a PM-based PET/CT (Discovery 690; GE Healthcare, Milwaukee, MI, USA). Standardized uptake values (SUV) and image interpretation were compared between the two systems. Image interpretations were further compared with histopathology when available. Results Seventeen patients referred for suspected lung cancer were included in our single injection, dual imaging study. No statically significant differences in SUVmax of suspected malignant primary tumours were found between the two PET/CT systems. SUVmax in suspected malignant intrathoracic lymph nodes was 10% higher on the SiPM-based system (p = 0.026). Good consistency (14/17 cases) between the PET/CT systems were found when comparing simplified TNM staging. The available histology results did not find any obvious differences between the systems. Conclusion In a clinical setting, the new SiPM-based PET/CT system with a new BSREM reconstruction algorithm provided a higher SUVmax for suspected lymph node metastases compared to the PM-based system. However, no improvement in lung cancer detection was seen.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhifang Wu ◽  
Binwei Guo ◽  
Bin Huang ◽  
Xinzhong Hao ◽  
Ping Wu ◽  
...  

AbstractTo evaluate the quantification accuracy of different positron emission tomography-computed tomography (PET/CT) reconstruction algorithms, we measured the recovery coefficient (RC) and contrast recovery (CR) in phantom studies. The results played a guiding role in the partial-volume-effect correction (PVC) for following clinical evaluations. The PET images were reconstructed with four different methods: ordered subsets expectation maximization (OSEM), OSEM with time-of-flight (TOF), OSEM with TOF and point spread function (PSF), and Bayesian penalized likelihood (BPL, known as Q.Clear in the PET/CT of GE Healthcare). In clinical studies, SUVmax and SUVmean (the maximum and mean of the standardized uptake values, SUVs) of 75 small pulmonary nodules (sub-centimeter group: < 10 mm and medium-size group: 10–25 mm) were measured from 26 patients. Results show that Q.Clear produced higher RC and CR values, which can improve quantification accuracy compared with other methods (P < 0.05), except for the RC of 37 mm sphere (P > 0.05). The SUVs of sub-centimeter fludeoxyglucose (FDG)-avid pulmonary nodules with Q.Clear illustrated highly significant differences from those reconstructed with other algorithms (P < 0.001). After performing the PVC, highly significant differences (P < 0.001) still existed in the SUVmean measured by Q.Clear comparing with those measured by the other algorithms. Our results suggest that the Q.Clear reconstruction algorithm improved the quantification accuracy towards the true uptake, which potentially promotes the diagnostic confidence and treatment response evaluations with PET/CT imaging, especially for the sub-centimeter pulmonary nodules. For small lesions, PVC is essential.


PLoS ONE ◽  
2017 ◽  
Vol 12 (6) ◽  
pp. e0178936 ◽  
Author(s):  
Lucia Baratto ◽  
Sonya Young Park ◽  
Negin Hatami ◽  
Guido Davidzon ◽  
Shyam Srinivas ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
D. Kersting ◽  
W. Jentzen ◽  
P. Fragoso Costa ◽  
M. Sraieb ◽  
P. Sandach ◽  
...  

AbstractThe radioiodine isotope pair 124I/131I is used in a theranostic approach for patient-specific treatment of differentiated thyroid cancer. Lesion detectability is notably higher for 124I PET (positron emission tomography) than for 131I gamma camera imaging but can be limited for small and low uptake lesions. The recently introduced silicon-photomultiplier-based (SiPM-based) PET/CT (computed tomography) systems outperform previous-generation systems in detector sensitivity, coincidence time resolution, and spatial resolution. Hence, SiPM-based PET/CT shows an improved detectability, particularly for small lesions. In this study, we compare the size-dependant minimum detectable 124I activity (MDA) between the SiPM-based Biograph Vision and the previous-generation Biograph mCT PET/CT systems and we attempt to predict the response to 131I radioiodine therapy of lesions additionally identified on the SiPM-based system. A tumour phantom mimicking challenging conditions (derived from published patient data) was used; i.e., 6 small spheres (diameter of 3.7–9.7 mm), 9 low activity concentrations (0.25–25 kBq/mL), and a very low signal-to-background ratio (20:1). List-mode emission data (single-bed position) were divided into frames of 4, 8, 16, and 30 min. Images were reconstructed with ordinary Poisson ordered-subsets expectation maximization (OSEM), additional time-of-flight (OSEM-TOF) or TOF and point spread function modelling (OSEM-TOF+PSF). The signal-to-noise ratio and the MDA were determined. Absorbed dose estimations were performed to assess possible treatment response to high-activity 131I radioiodine therapy. The signal-to-noise ratio and the MDA were improved from the mCT to the Vision, from OSEM to OSEM-TOF and from OSEM-TOF to OSEM-TOF+PSF reconstructed images, and from shorter to longer emission times. The overall mean MDA ratio of the Vision to the mCT was 0.52 ± 0.18. The absorbed dose estimations indicate that lesions ≥ 6.5 mm with expected response to radioiodine therapy would be detectable on both systems at 4-min emission time. Additional smaller lesions of therapeutic relevance could be detected when using a SiPM-based PET system at clinically reasonable emission times. This study demonstrates that additional lesions with predicted response to 131I radioiodine therapy can be detected. Further clinical evaluation is warranted to evaluate if negative 124I PET scans on a SiPM-based system can be sufficient to preclude patients from blind radioiodine therapy.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
David Kersting ◽  
Walter Jentzen ◽  
Miriam Sraieb ◽  
Pedro Fragoso Costa ◽  
Maurizio Conti ◽  
...  

Abstract Background In recurrent differentiated thyroid cancer patients, detectability in 124I PET is limited for lesions with low radioiodine uptake. We assess the improvements in lesion detectability and image quality between three generations of PET scanners with different detector technologies. The results are used to suggest an optimized protocol. Methods Datasets of 10 patients with low increasing thyroglobulin or thyroglobulin antibody levels after total thyroidectomy and radioiodine therapies were included. PET data were acquired and reconstructed on a Biograph mCT PET/CT (whole-body, 4-min acquisition time per bed position; OSEM, OSEM-TOF, OSEM-TOF+PSF), a non-TOF Biograph mMR PET/MR (neck region, 4 min and 20 min; OSEM), and a new generation Biograph Vision PET/CT (whole-body, 4 min; OSEM, OSEM-TOF, OSEM-TOF+PSF). The 20-min image on the mMR was used as reference to calculate the detection efficacy in the neck region. Image quality was rated on a 5-point scale. Results All detected lesions were in the neck region. Detection efficacy was 8/9 (Vision OSEM-TOF and OSEM-TOF+PSF), 4/9 (Vision OSEM), 3/9 (mMR OSEM and mCT OSEM-TOF+PSF), and 2/9 (mCT OSEM and OSEM-TOF). Median image quality was 4 (Vision OSEM-TOF and OSEM-TOF+PSF), 3 (Vision OSEM, mCT OSEM-TOF+PSF, and mMR OSEM 20-min), 2 (mCT OSEM-TOF), 1.5 (mCT OSEM), and 1 (mMR OSEM 4 min). Conclusion At a clinical standard acquisition time of 4 min per bed position, the new generation Biograph Vision using a TOF-based image reconstruction demonstrated the highest detectability and image quality and should, if available, be preferably used for imaging of low-uptake lesions. A prolonged acquisition time for the mostly affected neck region can be useful.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Kei Wagatsuma ◽  
Muneyuki Sakata ◽  
Kenji Ishibashi ◽  
Akira Hirayama ◽  
Hirofumi Kawakami ◽  
...  

Abstract Background Silicon photomultiplier-positron emission tomography (SiPM-PET) has better sensitivity, spatial resolution, and timing resolution than photomultiplier tube (PMT)-PET. The present study aimed to clarify the advantages of SiPM-PET in 18F-fluoro-2-deoxy-D-glucose ([18F]FDG) brain imaging in a head-to-head comparison with PMT-PET in phantom and clinical studies. Methods Contrast was calculated from images acquired from a Hoffman 3D brain phantom, and image noise and uniformity were calculated from images acquired from a pool phantom using SiPM- and PMT-PET. Sequential PMT-PET and SiPM-PET [18F]FDG images were acquired over a period of 10 min from 22 controls and 10 patients. All images were separately normalized to a standard [18F]FDG PET template, then the mean standardized uptake values (SUVmean) and Z-score were calculated using MIMneuro and CortexID Suite, respectively. Results Image contrast, image noise, and uniformity in SiPM-PET changed 19.2, 3.5, and − 40.0% from PMT-PET, respectively. These physical indices of both PET scanners satisfied the criteria for acceptable image quality published by the Japanese Society of Nuclear Medicine of contrast > 55%, CV ≤ 15%, and SD ≤ 0.0249, respectively. Contrast was 70.0% for SiPM-PET without TOF and 59.5% for PMT-PET without TOF. The TOF improved contrast by 3.5% in SiPM-PET. The SUVmean using SiPM-PET was significantly higher than PMT-PET and did not correlate with a time delay. Z-scores were also significantly higher in images acquired from SiPM-PET (except for the bilateral posterior cingulate) than PMT-PET because the peak signal that was extracted by the calculation of Z-score in CortexID Suite was increased. The hypometabolic area in statistical maps was reduced and localized using SiPM-PET. The trend was independent of whether the images were derived from controls or patients. Conclusions The improved spatial resolution and sensitivity of SiPM-PET contributed to better image contrast and uniformity in brain [18F]FDG images. The SiPM-PET offers better quality and more accurate quantitation of brain PET images. The SUVmean and Z-scores were higher in SiPM-PET than PMT-PET due to improved PVE. [18F]FDG images acquired using SiPM-PET will help to improve diagnostic outcomes based on statistical image analysis because SiPM-PET would localize the distribution of glucose metabolism on Z-score maps.


Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 992
Author(s):  
Lucia Baratto ◽  
Akira Toriihara ◽  
Negin Hatami ◽  
Carina M. Aparici ◽  
Guido Davidzon ◽  
...  

We prospectively enrolled patients with neuroendocrine tumors (NETs). They underwent a single 68Ga-DOTA-TATE injection followed by dual imaging and were randomly scanned using first either the conventional or the silicon photomultiplier (SiPM) positron emission tomography/computed tomography (PET/CT), followed by imaging using the other system. A total of 94 patients, 44 men and 50 women, between 35 and 91 years old (mean ± SD: 63 ± 11.2), were enrolled. Fifty-two out of ninety-four participants underwent SiPM PET/CT first and a total of 162 lesions were detected using both scanners. Forty-two out of ninety-four participants underwent conventional PET/CT first and a total of 108 lesions were detected using both scanners. Regardless of whether SiPM-based PET/CT was used first or second, maximum standardized uptake value (SUVmax) of lesions measured on SiPM was on average 20% higher when comparing two scanners with all enrolled patients, and the difference was statistically significant. SiPM-based PET/CT detected 19 more lesions in 13 patients compared with conventional PET/CT. No lesions were only identified by conventional PET/CT. In conclusion, we observed higher SUVmax for lesions measured from SiPM PET/CT compared with conventional PET/CT regardless of the order of the scans. SiPM PET/CT allowed for identification of more lesions than conventional PET/CT. While delayed imaging can lead to higher SUVmax in cancer lesions, in the series of lesions identified when SiPM PET/CT was used first, this was not the case; therefore, the data suggest superior performance of the SiPM PET/CT scanner in visualizing and quantifying lesions.


2007 ◽  
Vol 34 (10) ◽  
pp. 1683-1692 ◽  
Author(s):  
M. Teräs ◽  
T. Tolvanen ◽  
J. J. Johansson ◽  
J. J. Williams ◽  
J. Knuuti
Keyword(s):  
Pet Ct ◽  

2017 ◽  
Vol 58 (9) ◽  
pp. 1511-1518 ◽  
Author(s):  
David F.C. Hsu ◽  
Ezgi Ilan ◽  
William T. Peterson ◽  
Jorge Uribe ◽  
Mark Lubberink ◽  
...  

2017 ◽  
Vol 42 ◽  
pp. 203-210 ◽  
Author(s):  
Kei Wagatsuma ◽  
Kenta Miwa ◽  
Muneyuki Sakata ◽  
Keiichi Oda ◽  
Haruka Ono ◽  
...  
Keyword(s):  
Pet Ct ◽  

Sign in / Sign up

Export Citation Format

Share Document