Robust Concept Exploration of Materials, Products, and Associated Manufacturing Processes

Author(s):  
Anand Balu Nellippallil ◽  
Janet K. Allen ◽  
B. P. Gautham ◽  
Amarendra K. Singh ◽  
Farrokh Mistree
Author(s):  
Anand Balu Nellippallil ◽  
Pranav Mohan ◽  
Janet K. Allen ◽  
Farrokh Mistree

In this paper, we present robust concept exploration using a goal-oriented, inverse decision-based design method to carry out the integrated design of material, product and associated manufacturing processes by managing the uncertainty involved. The uncertainty in complex material and product systems is derived from many sources and we classify robust design based on these sources — uncertainty in noise factors (Type I robust design); uncertainty in design variables or control factors (Type II robust design); uncertainty in function relationship between control/noise and response (Type III robust design); and propagation and potential amplification of uncertainty in a process chain (Type I to III robust designs across process chains). In this paper, we introduce a variation to the existing goal-oriented inverse decision-based design method to bring in robustness for multiple conflicting goals from the stand-point of Type I to III robust design across process chains. The variation embodies the introduction of specific robust design goals and constraints anchored in the mathematical constructs of error margin indices and design capability indices to determine “satisficing robust design” specifications for given performance requirement ranges using the goal-oriented, inverse design method. The design of a hot rolling process chain for the production of a rod is used as an example.


TAPPI Journal ◽  
2018 ◽  
Vol 17 (08) ◽  
pp. 437-443
Author(s):  
Lebo Xu ◽  
Jeremy Meyers ◽  
Peter Hart

Coffee edge-wicking testing was conducted on two groups of highly-sized paperboard manufactured at two mills with similar manufacturing processes, but with vastly different local fiber sources. Although the Hercules size test (HST) indicated similar internal size levels between the two types of board, the edge-wicking behavior was noticeably different. Analysis of fiber structure revealed that the board with more edge-wicking had fibers with thicker fiber walls, which kept the fiber lumen more open after pressing and drying on a paper machine. It was demonstrated that liquid penetration through voids between fibers in highly-sized paperboard was limited, because the fiber surface was well protected by the presence of sufficient sizing agent. Nevertheless, freshly exposed fiber walls and lumens at the cut edge of the sheet were not protected by sizing material, which facilitated edge-wicking. The correlation between fiber structure and edge-wicking behavior was highlighted in this work to inspire development of novel sizing strategies that protect the freshly cut edge of the sheet from edge-wicking.


Author(s):  
Pei Y. Tsai ◽  
Junedong Lee ◽  
Paul Ronsheim ◽  
Lindsay Burns ◽  
Richard Murphy ◽  
...  

Abstract A stringent sampling plan is developed to monitor and improve the quality of 300mm SOI (silicon on insulator) starting wafers procured from the suppliers. The ultimate goal is to obtain the defect free wafers for device fabrication and increase yield and circuit performance of the semiconductor integrated circuits. This paper presents various characterization techniques for QC monitor and examples of the typical defects attributed to wafer manufacturing processes.


Author(s):  
Camelia Hora ◽  
Stefan Eichenberger

Abstract Due to the development of smaller and denser manufacturing processes most of the hardware localization techniques cannot keep up satisfactorily with the technology trend. There is an increased need in precise and accurate software based diagnosis tools to help identify the fault location. This paper describes the software based fault diagnosis method used within Philips, focusing on the features developed to increase its accuracy.


Sign in / Sign up

Export Citation Format

Share Document