scholarly journals Avoiding or Co-Opting ATP Inhibition: Overview of Type III, IV, V, and VI Kinase Inhibitors

Author(s):  
Ramon Martinez ◽  
Amy Defnet ◽  
Paul Shapiro
2016 ◽  
Author(s):  
Zheng Zhao ◽  
Lei Xie ◽  
Philip E. Bourne

AbstractProtein kinases are critical drug targets for treating a large variety of human diseases. Type-I and type-II kinase inhibitors frequently exhibit off-target toxicity or lead to mutation acquired resistance. Two highly specific allosteric type-III MEK-targeted drugs, Trametinib and Cobimetinib, offer a new approach. Thus, understanding the binding mechanism of existing type-III kinase inhibitors will provide insights for designing new type-III kinase inhibitors. In this work we have systematically studied the binding mode of MEK-targeted type-III inhibitors using structural systems pharmacology and molecular dynamics simulation. Our studies provide detailed sequence, structure, interaction-fingerprint, pharmacophore and binding-site information on the binding characteristics of MEK type-III kinase inhibitors. We propose that the helix-folding activation loop is a hallmark allosteric binding site for type-III inhibitors. Subsequently we screened and predicted allosteric binding sites across the human kinome, suggesting other kinases as potential targets suitable for type-III inhibitors. Our findings will provide new insights into the design of potent and selective kinases inhibitors.Author SummaryHuman protein kinases represent a large protein family relevant to many diseases, especially cancers, and have become important drug targets. However, developing the desired selective kinase-targeted inhibitors remain challenging. Kinase allosteric inhibitors provide that opportunity, but, to date, few have been designed other than MEK inhibitors. To more efficiently develop kinase allosteric inhibitors, we systematically studied the binding mode of the MEK type-III allosteric kinase inhibitors using structural system pharmacology and molecular dynamics approaches. New insights into the binding mode and mechanism of type-III inhibitors were revealed that may facilitate the design of new prospective type-III kinase inhibitors.


mBio ◽  
2018 ◽  
Vol 9 (3) ◽  
Author(s):  
Matthew A. Szaniawski ◽  
Adam M. Spivak ◽  
James E. Cox ◽  
Jonathan L. Catrow ◽  
Timothy Hanley ◽  
...  

ABSTRACTMacrophages are susceptible to human immunodeficiency virus type 1 (HIV-1) infection despite abundant expression of antiviral proteins. Perhaps the most important antiviral protein is the restriction factor sterile alpha motif domain and histidine/aspartic acid domain-containing protein 1 (SAMHD1). We investigated the role of SAMHD1 and its phospho-dependent regulation in the context of HIV-1 infection in primary human monocyte-derived macrophages and the ability of various interferons (IFNs) and pharmacologic agents to modulate SAMHD1. Here we show that stimulation by type I, type II, and to a lesser degree, type III interferons share activation of SAMHD1 via dephosphorylation at threonine-592 as a consequence of signaling. Cyclin-dependent kinase 1 (CDK1), a known effector kinase for SAMHD1, was downregulated at the protein level by all IFN types tested. Pharmacologic inhibition or small interfering RNA (siRNA)-mediated knockdown of CDK1 phenocopied the effects of IFN on SAMHD1. A panel of FDA-approved tyrosine kinase inhibitors potently induced activation of SAMHD1 and subsequent HIV-1 inhibition. The viral restriction imposed via IFNs or dasatinib could be overcome through depletion of SAMHD1, indicating that their effects are exerted primarily through this pathway. Our results demonstrate that SAMHD1 activation, but not transcriptional upregulation or protein induction, is the predominant mechanism of HIV-1 restriction induced by type I, type II, and type III IFN signaling in macrophages. Furthermore, SAMHD1 activation presents a pharmacologically actionable target through which HIV-1 infection can be subverted.IMPORTANCEOur experimental results demonstrate that SAMHD1 dephosphorylation at threonine-592 represents a central mechanism of HIV-1 restriction that is common to the three known families of IFNs. While IFN types I and II were potent inhibitors of HIV-1, type III IFN showed modest to undetectable activity. Regulation of SAMHD1 by IFNs involved changes in phosphorylation status but not in protein levels. Phosphorylation of SAMHD1 in macrophages occurred at least in part via CDK1. Tyrosine kinase inhibitors similarly induced SAMHD1 dephosphorylation, which protects macrophages from HIV-1 in a SAMHD1-dependent manner. SAMHD1 is a critical restriction factor regulating HIV-1 infection of macrophages.


MedChemComm ◽  
2013 ◽  
Vol 4 (1) ◽  
pp. 41-51 ◽  
Author(s):  
Lori Krim Gavrin ◽  
Eddine Saiah

This review will highlight the most commonly used methods to discover small molecule Type III/IV kinase inhibitors.


2009 ◽  
Vol 19 (1) ◽  
pp. 226-229 ◽  
Author(s):  
Haile Tecle ◽  
Jianxing Shao ◽  
Yanhong Li ◽  
Michael Kothe ◽  
Steven Kazmirski ◽  
...  

2014 ◽  
Vol 23 (6) ◽  
pp. 809-821 ◽  
Author(s):  
Morena Fasano ◽  
Carminia Maria Della Corte ◽  
Raffaele Califano ◽  
Annalisa Capuano ◽  
Teresa Troiani ◽  
...  

Author(s):  
Sunao Fujimoto ◽  
Raymond G. Murray ◽  
Assia Murray

Taste bud cells in circumvallate papillae of rabbit have been classified into three groups: dark cells; light cells; and type III cells. Unilateral section of the 9th nerve distal to the petrosal ganglion was performed in 18 animals, and changes of each cell type in the denervated buds were observed from 6 hours to 10 days after the operation.Degeneration of nerves is evident at 12 hours (Fig. 1) and by 2 days, nerves are completely lacking in the buds. Invasion by leucocytes into the buds is remarkable from 6 to 12 hours but then decreases. Their extrusion through the pore is seen. Shrinkage and disturbance in arrangement of cells in the buds can be seen at 2 days. Degenerated buds consisting of a few irregular cells and remnants of degenerated cells are present at 4 days, but buds apparently normal except for the loss of nerve elements are still present at 6 days.


Author(s):  
E.M. Kuhn ◽  
K.D. Marenus ◽  
M. Beer

Fibers composed of different types of collagen cannot be differentiated by conventional electron microscopic stains. We are developing staining procedures aimed at identifying collagen fibers of different types.Pt(Gly-L-Met)Cl binds specifically to sulfur-containing amino acids. Different collagens have methionine (met) residues at somewhat different positions. A good correspondence has been reported between known met positions and Pt(GLM) bands in rat Type I SLS (collagen aggregates in which molecules lie adjacent to each other in exact register). We have confirmed this relationship in Type III collagen SLS (Fig. 1).


Author(s):  
G. D. Gagne ◽  
M. F. Miller ◽  
D. A. Peterson

Experimental infection of chimpanzees with non-A, non-B hepatitis (NANB) or with delta agent hepatitis results in the appearance of characteristic cytoplasmic alterations in the hepatocytes. These alterations include spongelike inclusions (Type I), attached convoluted membranes (Type II), tubular structures (Type III), and microtubular aggregates (Type IV) (Fig. 1). Type I, II and III structures are, by association, believed to be derived from endoplasmic reticulum and may be morphogenetically related. Type IV structures are generally observed free in the cytoplasm but sometimes in the vicinity of type III structures. It is not known whether these structures are somehow involved in the replication and/or assembly of the putative NANB virus or whether they are simply nonspecific responses to cellular injury. When treated with uranyl acetate, type I, II and III structures stain intensely as if they might contain nucleic acids. If these structures do correspond to intermediates in the replication of a virus, one might expect them to contain DNA or RNA and the present study was undertaken to explore this possibility.


Sign in / Sign up

Export Citation Format

Share Document