type iii ifn
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 42)

H-INDEX

23
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Slim Fourati ◽  
David Jimenez-Morales ◽  
Judd F. Hultquist ◽  
Max W Chang ◽  
Christopher Benner ◽  
...  

Ly6Chi inflammatory monocytes show high IFN responses, and contribute to both protective and pathogenic functions following influenza virus infection. In order to understand the significance of IFN responses in this subset, we examined monocytes during infection with a lethal H5N1 virus that induces high levels of IFN and a low-pathogenicity H1N1 virus that induces low levels of IFN. We show that H5N1 infection results in early recruitment of high numbers of Ly6Chi monocytes and induction of chemokines and Ifnb1. Using unbiased transcriptomic and proteomic approaches, we also find that monocytes are significantly enriched during H5N1 infection and are associated with chemokine and IFN signatures in mice, and with severity of symptoms after influenza virus infection in humans. Recruited Ly6Chi monocytes subsequently become infected in the lung, produce IFN-β, and mature into FasL+ monocyte-derived cells (FasL+MCs) expressing dendritic cell markers. Both Ccr2-/- and Faslgld mice are protected from lethal infection, indicating that monocytes contribute to pathogenesis. Global loss of type I and type III IFN signaling in Stat2-/- mice results in loss of monocyte recruitment, likely reflecting a requirement for IFN-dependent chemokine induction. Here we show that IFN is not directly required for monocyte recruitment on an IFN-sufficient background, but is required for maturation to FasL+MCs. Loss of IFN signaling skews to a Ly6Clo phenotype associated with tissue repair, suggesting that IFN signaling in monocytes is a critical determinant of influenza virus pathogenesis.


2022 ◽  
Author(s):  
Rebecca L. Casazza ◽  
Drake T Philip ◽  
Helen M. Lazear

Interferon lambda (IFN-λ, type III IFN) is constitutively secreted from human placental cells in culture and reduces Zika virus (ZIKV) transplacental transmission in mice. However, the roles of IFN-λ during healthy pregnancy and in restricting congenital infection remain unclear. Here we used mice lacking the IFN-λ receptor (Ifnlr1-/-) to generate pregnancies lacking either maternal or fetal IFN-λ responsiveness and found that the antiviral effect of IFN-λ resulted from signaling exclusively in maternal tissues. This protective effect depended on gestational stage, as infection earlier in pregnancy (E7 rather than E9) resulted in enhanced transplacental transmission of ZIKV. In Ifnar1-/- dams, which sustain robust ZIKV infection, maternal IFN-λ signaling caused fetal resorption and intrauterine growth restriction. Pregnancy pathology elicited by poly(I:C) treatment also was mediated by maternal IFN-λ signaling, specifically in maternal leukocytes, and also occurred in a gestational stage-dependent manner. These findings identify an unexpected effect of IFN-λ signaling specifically in maternal (rather than placental or fetal) tissues, which is distinct from the pathogenic effects of IFN-αβ (type I IFN) during pregnancy. These results highlight the complexity of immune signaling at the maternal-fetal interface, where disparate outcomes can result from signaling at different gestational stages.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tamiris Azamor ◽  
Daniela Prado Cunha ◽  
Andréa Marques Vieira da Silva ◽  
Ohanna Cavalcanti de Lima Bezerra ◽  
Marcelo Ribeiro-Alves ◽  
...  

Host factors that influence Congenital Zika Syndrome (CZS) outcome remain elusive. Interferons have been reported as the main antiviral factor in Zika and other flavivirus infections. Here, we accessed samples from 153 pregnant women (77 without and 76 with CZS) and 143 newborns (77 without and 66 with CZS) exposed to ZIKV conducted a case-control study to verify whether interferon alfa receptor 1 (IFNAR1) and interferon lambda 2 and 4 (IFNL2/4) single nucleotide polymorphisms (SNPs) contribute to CZS outcome, and characterized placenta gene expression profile at term. Newborns carrying CG/CC genotypes of rs2257167 in IFNAR1 presented higher risk of developing CZS (OR=3.41; IC=1.35-8.60; Pcorrected=0.032). No association between IFNL SNPs and CZS was observed. Placenta from CZS cases displayed lower levels of IFNL2 and ISG15 along with higher IFIT5. The rs2257167 CG/CC placentas also demonstrated high levels of IFIT5 and inflammation-related genes. We found CZS to be related with exacerbated type I IFN and insufficient type III IFN in placenta at term, forming an unbalanced response modulated by the IFNAR1 rs2257167 genotype. Despite of the low sample size se findings shed light on the host-pathogen interaction focusing on the genetically regulated type I/type III IFN axis that could lead to better management of Zika and other TORCH (Toxoplasma, Others, Rubella, Cytomegalovirus, Herpes) congenital infections.


2021 ◽  
Vol 102 (11) ◽  
Author(s):  
Jennifer Deborah Wuerth ◽  
Friedemann Weber

Phleboviruses (order Bunyavirales, family Phenuiviridae) are globally emerging arboviruses with a wide spectrum of virulence. Sandfly fever Sicilian virus (SFSV) is one of the most ubiquitous members of the genus Phlebovirus and associated with a self-limited, incapacitating febrile disease in travellers and military troops. The phleboviral NSs protein is an established virulence factor, acting as antagonist of the antiviral interferon (IFN) system. Consistently, we previously reported that SFSV NSs targets the induction of IFN mRNA synthesis by specifically binding to the DNA-binding domain of the IFN transcription factor IRF3. Here, we further characterized the effect of SFSV and its NSs towards IFN induction, and evaluated its potential to affect the downstream IFN-stimulated signalling and the subsequent transactivation of antiviral interferon-stimulated genes (ISGs). We found that SFSV dampened, but did not entirely abolish type I and type III IFN induction. Furthermore, SFSV NSs did not affect IFN signalling, resulting in substantial ISG expression in infected cells. Hence, although SFSV targets IRF3 to reduce IFN induction, it is not capable of entirely disarming the IFN system in the presence of high basal IRF3 and/or IRF7 levels, and we speculate that this significantly contributes to its low level of virulence.


2021 ◽  
Author(s):  
Jean-Patrick Parisien ◽  
Jessica J. Lenoir ◽  
Gloria Alvarado ◽  
Curt M. Horvath

The ability of viruses to evade the host antiviral immune system determines their level of replication fitness, species specificity, and pathogenic potential. Flaviviruses rely on the subversion of innate immune barriers including the type I and type III IFN antiviral systems. Zika virus infection induces the degradation of STAT2, an essential component of the IFN stimulated gene transcription factor, ISGF3. The mechanisms that lead to STAT2 degradation by Zika virus are poorly understood, but it is known to be mediated by the viral NS5 protein that binds to STAT2 and targets it for proteasome-mediated destruction. To better understand how NS5 engages and degrades STAT2, functional analysis of the protein interactions that lead to Zika virus and NS5-dependent STAT2 proteolysis were investigated. Data implicate the STAT2 coiled-coil domain as necessary and sufficient for NS5 interaction and proteasome degradation after Zika virus infection. Molecular dissection reveals that the first two α-helices of the STAT2 coiled-coil contain a specific targeting region for IFN antagonism. These functional interactions provide a more complete understanding of the essential protein-protein interactions needed for Zika virus evasion of the host antiviral response, and identifies new targets for antiviral therapeutic approaches. Importance Zika virus infection can cause mild fever, rash, and muscle pain, and in rare cases lead to brain or nervous system diseases including Guillain–Barré syndrome. Infections in pregnant women can increase the risk of miscarriage or serious birth defects including brain anomalies and microcephaly. There are no drugs or vaccines for Zika disease. Zika virus is known to break down the host antiviral immune response, and this research project reveals how the virus suppresses interferon signaling, and may reveal therapeutic vulnerabilities.


2021 ◽  
Author(s):  
Jean-Patrick Parisien ◽  
Jessica J Lenoir ◽  
Gloria Alvarado ◽  
Curt M Horvath

The ability of viruses to evade the host antiviral immune system determines their level of replication fitness, species specificity, and pathogenic potential. Flaviviruses rely on the subversion of innate immune barriers including the type I and type III IFN antiviral systems. Zika virus infection induces the degradation of STAT2, an essential component of the IFN stimulated gene transcription factor, ISGF3. The mechanisms that lead to STAT2 degradation by Zika virus are poorly understood, but it is known to be mediated by the viral NS5 protein that binds to STAT2 and targets it for proteasome-mediated destruction. To better understand how NS5 engages and degrades STAT2, functional analysis of the protein interactions that lead to Zika virus and NS5-dependent STAT2 proteolysis were investigated. Data implicate the STAT2 coiled-coil domain as necessary and sufficient for NS5 interaction and proteasome degradation after Zika virus infection. Molecular dissection reveals that the first two α-helices of the STAT2 coiled-coil contain a specific targeting region for IFN antagonism. These functional interactions provide a more complete understanding of the essential protein-protein interactions needed for Zika virus evasion of the host antiviral response, and identifies new targets for antiviral therapeutic approaches.


2021 ◽  
Vol 17 (8) ◽  
pp. e1009800
Author(s):  
Maya Shemesh ◽  
Turgut E. Aktepe ◽  
Joshua M. Deerain ◽  
Julie L. McAuley ◽  
Michelle D. Audsley ◽  
...  

Type I Interferons (IFN-Is) are a family of cytokines which play a major role in inhibiting viral infection. Resultantly, many viruses have evolved mechanisms in which to evade the IFN-I response. Here we tested the impact of expression of 27 different SARS-CoV-2 genes in relation to their effect on IFN production and activity using three independent experimental methods. We identified six gene products; NSP6, ORF6, ORF7b, NSP1, NSP5 and NSP15, which strongly (>10-fold) blocked MAVS-induced (but not TRIF-induced) IFNβ production. Expression of the first three of these SARS-CoV-2 genes specifically blocked MAVS-induced IFNβ-promoter activity, whereas all six genes induced a collapse in IFNβ mRNA levels, corresponding with suppressed IFNβ protein secretion. Five of these six genes furthermore suppressed MAVS-induced activation of IFNλs, however with no effect on IFNα or IFNγ production. In sharp contrast, SARS-CoV-2 infected cells remained extremely sensitive to anti-viral activity exerted by added IFN-Is. None of the SARS-CoV-2 genes were able to block IFN-I signaling, as demonstrated by robust activation of Interferon Stimulated Genes (ISGs) by added interferon. This, despite the reduced levels of STAT1 and phospho-STAT1, was likely caused by broad translation inhibition mediated by NSP1. Finally, we found that a truncated ORF7b variant that has arisen from a mutant SARS-CoV-2 strain harboring a 382-nucleotide deletion associating with mild disease (Δ382 strain identified in Singapore & Taiwan in 2020) lost its ability to suppress type I and type III IFN production. In summary, our findings support a multi-gene process in which SARS-CoV-2 blocks IFN-production, with ORF7b as a major player, presumably facilitating evasion of host detection during early infection. However, SARS-CoV-2 fails to suppress IFN-I signaling thus providing an opportunity to exploit IFN-Is as potential therapeutic antiviral drugs.


2021 ◽  
Author(s):  
Yue Yin ◽  
Nicolás Romero ◽  
Herman W. Favoreel

Both type I and III interferons (IFNs) play a crucial role in host antiviral response by activating the JAK/STAT (Janus kinase/signal transducer and activator of transcription) signaling pathway to trigger the expression of antiviral IFN-stimulated genes (ISGs). We report that the porcine alphaherpesvirus pseudorabies virus (PRV) triggers proteasomal degradation of the key Janus kinases Jak1 and to a lesser exent Tyk2, thereby inhibiting both type I and III IFN-induced STAT1 phosphorylation and suppressing IFN-induced expression of ISGs. UV-inactivated PRV did not interfere with IFN signaling. In addition, deletion of the EP0 gene from the PRV genome or inhibition of viral genome replication did not affect PRV-induced inhibition of IFN signaling. To our knowledge, this is the first report describing Janus kinase degradation by alphaherpesviruses. These findings thus reveal a novel alphaherpesvirus evasion mechanism of type I and type III IFNs. IMPORTANCE Type I and III IFNs trigger signaling via Janus kinases that phosphorylate and activate STAT transcription factors, leading to the expression of antiviral interferon-stimulated genes (ISGs) that result in an antiviral state of host cells. Viruses have evolved various mechanisms to evade this response. Our results indicate that an alphaherpesvirus, the porcine pseudorabies virus (PRV), inhibits both type I and III IFNs signaling pathways by triggering proteasome-dependent degradation of the key Janus kinases Jak1 and Tyk2 and consequent inhibition of STAT1 phosphorylation and suppression of ISG expression. Moreover, we found that this inhibition is not caused by incoming virions and does not depend on expression of the viral EP0 protein or viral true late proteins. These data for the first time address alphaherpesvirus evasion of type III IFN-mediated signaling and reveal a previously uncharacterized alphaherpesvirus mechanism of IFN evasion via proteasomal degradation of Janus kinases.


2021 ◽  
Author(s):  
Sonia Jangra ◽  
Aradhana Bharti ◽  
Wai-Yin Lui ◽  
Vidyanath Chaudhary ◽  
Michael George Botelho ◽  
...  

Some lytic proteins encoded by Epstein-Barr virus (EBV) suppress host interferon (IFN) signaling to facilitate viral replication. In this study we sought to identify and characterize EBV proteins antagonizing IFN signaling. The induction of IFN-stimulated genes (ISGs) by IFN-β was effectively suppressed by EBV. A functional screen was therefore performed to identify IFN-antagonizing proteins encoded by EBV. EBV tegument protein BGLF2 was identified as a potent suppressor of JAK-STAT signaling. This activity was found to be independent of its stimulatory effect on p38 and JNK pathways. Association of BGLF2 with STAT2 resulted in more pronounced K48-linked polyubiquitination and proteasomal degradation of the latter. Mechanistically, BGLF2 promoted the recruitment of SHP1 phosphatase to STAT1 to inhibit its tyrosine phosphorylation. In addition, BGLF2 associated with cullin 1 E3 ubiquitin ligase to facilitate its recruitment to STAT2. Consequently, BGLF2 suppressed ISG induction by IFN-β. Furthermore, BGLF2 also suppressed type II and type III IFN signaling, although the suppressive effect on type II IFN response was milder. When pre-treated with IFN-β, host cells became less susceptible to primary infection of EBV. This phenotype was reversed when expression of BGLF2 was enforced. Finally, genetic disruption of BGLF2 in EBV led to more pronounced induction of ISGs. Taken together, our study unveils the roles of BGLF2 not only in the subversion of innate IFN response but also in lytic infection and reactivation of EBV. Importance Epstein-Barr virus (EBV) is an oncogenic virus associated with the development of lymphoid and epithelial malignancies. EBV has to subvert interferon-mediated host antiviral response to replicate and cause diseases. It is therefore of great interest to identify and characterize interferon-antagonizing proteins produced by EBV. In this study we perform a screen to search for EBV proteins that suppress the action of interferons. We further show that BGLF2 protein of EBV is particularly strong in this suppression. This is achieved by inhibiting two key proteins STAT1 and STAT2 that mediate the antiviral activity of interferons. BGLF2 recruits a host enzyme to remove the phosphate group from STAT1 thereby inactivating its activity. BGLF2 also redirects STAT2 for degradation. A recombinant virus in which BGLF2 gene has been disrupted can activate host interferon response more robustly. Our findings reveal a novel mechanism by which EBV BGLF2 protein suppresses interferon signaling.


2021 ◽  
Author(s):  
Carmon Kee ◽  
Camila Metz-Zumaran ◽  
Patricio Doldan ◽  
Cuncai Guo ◽  
Megan Stanifer ◽  
...  

The coronavirus SARS-CoV-2 caused the COVID-19 global pandemic leading to 3.5 million deaths worldwide as of June 2021. The human intestine was found to be a major viral target which could have a strong impact on virus spread and pathogenesis since it is one of the largest organs. While type I interferons (IFNs) are key cytokines acting against systemic virus spread, in the human intestine type III IFNs play a major role by restricting virus infection and dissemination without disturbing homeostasis. Recent studies showed that both type I and III IFNs can inhibit SARS-CoV-2 infection, but it is not clear if one IFN controls SARS-CoV-2 infection of the human intestine better or with a faster kinetics. In this study, we could show that both type I and III IFNs possess antiviral activity against SARS-CoV-2 in human intestinal epithelial cells (hIECs), however type III IFN is more potent. Shorter type III IFN pretreatment times and lower concentrations were required to efficiently reduce virus load when compared to type I IFNs. Moreover, type III IFNs significantly inhibited SARS-CoV-2 even 4 hours post-infection and induced a long-lasting antiviral effect in hIECs. Importantly, the sensitivity of SARS-CoV-2 to type III IFNs was virus-specific since type III IFN did not control VSV infection as efficiently. Together these results suggest that type III IFNs have a higher potential for IFN-based treatment of SARS-CoV-2 intestinal infection as compared to type I IFNs.


Sign in / Sign up

Export Citation Format

Share Document