scholarly journals Digital Assisted Image Correlation for Metal Sheet Strain Measurement

Author(s):  
García-Alcalá Carlos-Eduardo ◽  
Padilla-Medina José-Alfredo ◽  
Barranco-Gutiérrez Alejandro-Israel
2020 ◽  
Vol 6 (3) ◽  
pp. 196-199
Author(s):  
Alina Carabello ◽  
Constanze Neupetsch ◽  
Michael Werner ◽  
Christian Rotsch ◽  
Welf-Guntram Drossel ◽  
...  

AbstractTo increase learning success in surgical training, physical simulators are supplemented by measurement technology to generate and record objective feedback and error detection. An opportunity to detect fractures following hip stem implantation early can be measurement of occurring strains on bone surface. These strains can be determined while using strain gauges, digital image correlation (DIC) or photoelasticity. In this research strain gauges and DIC were compared regarding their suitability as strain measurement tools for use in physical simulators. Therefore a testing method was described to replicate the implantation of a hip stem. Testing devices modelled on a realistic prosthesis were pressed into prepared porcine femora in a two-step procedure with a material testing machine. The local strains occurring on bone surface were determined using an optical measurement system for DIC and strain gauges. The initial fractures in the tested femora are located medial-anterior in most cases (73,6%). With increasing indentation depth of the test device, the strains on bone surface increase. Comparing the local strains determined by DIC and strain gauges consistencies in curves are noticeable. Maximal determined strains before fracturing amount to 0,69% with strain gauges and 0,75% with DIC. In the range of the fracture gap, strain gradients are determined by using DIC. However the detected surfaces are of low quality caused by gaps and motion artefacts. The results show strains on bone surfaces for early fracture detection are measurable with strain gauges and DIC. DIC is assessed as less suitable compared to strain gauges. Furthermore strain gauges have greater level of integration and economic efficiency, so they are preferred the use in surgical training simulators.


2019 ◽  
Vol 86 (3) ◽  
pp. 175-183
Author(s):  
Julian Lich ◽  
Tino Wollmann ◽  
Angelos Filippatos ◽  
Maik Gude ◽  
Robert Kuschmierz ◽  
...  

AbstractIn-situ measurements of the deformation and of the structural dynamical behavior of moving composite structures, such as rotors made of glass fiber reinforced polymers (GFRP), are necessary in order to validate newly developed simulation models. Local methods like strain gauges and fiber Bragg gratings lack spatial resolution, while contactless optical methods like image correlation or speckle interferometry suffer from noise effects in the presence of fast rigid body movements. A novel compact sensor – based on the diffraction grating method – is introduced for spatially and temporally resolved strain measurement. The use of a line camera allows the measurement of vibrations up to several tens of kHz. With a scanning movement, strain fields at submillimeter resolution can be recorded. The use of two diffraction orders and an objective lens reduces cross sensitivities to rigid body movements on the strain measurement by two to three orders of magnitude. A validation on a GFRP probe was conducted in a quasi-static tensile test with an optical extensometer up to 14500 µϵ. Furthermore, a strain measurement on a moving rotor at surface speeds up to 75 m/s was performed and the results were compared with those of strain gauges as a gold standard. The statistical standard deviation was around 10 µϵ and independent of the rotational speed.


2018 ◽  
Vol 89 (10) ◽  
pp. 105110 ◽  
Author(s):  
Xinxing Shao ◽  
Zhenning Chen ◽  
Xiangjun Dai ◽  
Xiaoyuan He

2016 ◽  
Vol 23 (3) ◽  
pp. 461-480 ◽  
Author(s):  
Sze-Wei Khoo ◽  
Saravanan Karuppanan ◽  
Ching-Seong Tan

Abstract Among the full-field optical measurement methods, the Digital Image Correlation (DIC) is one of the techniques which has been given particular attention. Technically, the DIC technique refers to a non-contact strain measurement method that mathematically compares the grey intensity changes of the images captured at two different states: before and after deformation. The measurement can be performed by numerically calculating the displacement of speckles which are deposited on the top of object’s surface. In this paper, the Two-Dimensional Digital Image Correlation (2D-DIC) is presented and its fundamental concepts are discussed. Next, the development of the 2D-DIC algorithms in the past 33 years is reviewed systematically. The improvement of 2DDIC algorithms is presented with respect to two distinct aspects: their computation efficiency and measurement accuracy. Furthermore, analysis of the 2D-DIC accuracy is included, followed by a review of the DIC applications for two-dimensional measurements.


2020 ◽  
Vol 40 (3) ◽  
pp. 0312001
Author(s):  
王学滨 Wang Xuebin ◽  
董伟 Dong Wei ◽  
杨梅 Yang Mei ◽  
张博闻 Zhang Bowen ◽  
余斌 Yu Bin

Sign in / Sign up

Export Citation Format

Share Document