scholarly journals Introduction

Author(s):  
Dominik Möst ◽  
Steffi Schreiber ◽  
Martin Jakob

AbstractThe future energy system in Europe needs to be decarbonized and thus be based almost exclusively on renewable energy sources. Therefore it is challenged by the intermittent nature of renewables and requires several flexibility options. The interaction between different options and the impact on environment and society are in the focus of this contribution. It is the core objective of this book to analyze and evaluate the development toward a low-carbon energy system with focus on flexibility options in the EU to support the implementation of the Strategy Energy Technology Plan. The analyses are based on a bottom-up modeling environment that considers current and future energy technologies, policy measures and their impact on environment and society while considering technological learning of low-carbon and flexibility technologies.

Author(s):  
Sara Bellocchi ◽  
Kai Klöckner ◽  
Michele Manno ◽  
Michel Noussan ◽  
Michela Vellini

Electric vehicles, being able to reduce pollutant and greenhouse gas emissions and shift the economy away from oil products, can play a major role in the transition towards low-carbon energy systems. However, the related increase in electricity demand inevitably affects the strategic planning of the overall energy system as well as the definition of the optimal power generation mix. With this respect, the impact of electric vehicles may vary significantly depending on the composition of both total primary energy supply and electricity generation. In this study, Italy and Germany are compared to highlight how a similarity in their renewable shares not necessarily leads to a CO2 emissions reduction. Different energy scenarios are simulated with the help of EnergyPLAN software assuming a progressive increase in renewable energy sources capacity and electric vehicles penetration. Results show that, for the German case, the additional electricity required leads to a reduction in CO2 emissions only if renewable capacity increases significantly, whereas the Italian energy system benefits from transport electrification even at low renewable capacity. Smart charging strategies are also found to foster renewable integration; however, power curtailments are still significant at high renewable capacity in the absence of large-scale energy storage systems.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Brighid Moran Jay ◽  
David Howard ◽  
Nick Hughes ◽  
Jeanette Whitaker ◽  
Gabrial Anandarajah

Low carbon energy technologies are not deployed in a social vacuum; there are a variety of complex ways in which people understand and engage with these technologies and the changing energy system overall. However, the role of the public’s socio-environmental sensitivities to low carbon energy technologies and their responses to energy deployments does not receive much serious attention in planning decarbonisation pathways to 2050. Resistance to certain resources and technologies based on particular socio-environmental sensitivities would alter the portfolio of options available which could shape how the energy system achieves decarbonisation (the decarbonisation pathway) as well as affecting the cost and achievability of decarbonisation. Thus, this paper presents a series of three modelled scenarios which illustrate the way that a variety of socio-environmental sensitivities could impact the development of the energy system and the decarbonisation pathway. The scenarios represent risk aversion (DREAD) which avoids deployment of potentially unsafe large-scale technology, local protectionism (NIMBY) that constrains systems to their existing spatial footprint, and environmental awareness (ECO) where protection of natural resources is paramount. Very different solutions for all three sets of constraints are identified; some seem slightly implausible (DREAD) and all show increased cost (especially in ECO).


Author(s):  
Kathleen Araújo

This chapter outlines the design of the current study. It discusses my underlying logic for scoping energy system change with theory-building in the form of (1) a framework on intervention that operationalizes insights from the previous chapter and (2) conceptual models of structural readiness. A brief review then follows of related, global developments to provide broader context for the cases. The chapter concludes with a preview of the transitions that will be discussed in depth in subsequent chapters. This book draws on my research of four national energy system transitions covering the period since 1970. I selected a timeframe that reflected a common context of international events which preceded as well as followed the oil shocks of 1973 and 1979. Such framing allowed me to trace policy and technology learning over multiple decades for different cases. I completed field work for this project primarily between 2010 and 2012, with updates continuing through to the time this book went to press. I selected cases from more than 100 countries in the International Energy Agency (IEA) databases. The ones that I chose represented countries which demonstrated an increase of 100% or more in domestic production of a specific, low carbon energy and the displacement of at least 15 percentage points in the energy mix by this same, low carbon energy relative to traditional fuels for the country and sector of relevance. I utilized adoption and displacement metrics to consider both absolute and relative changes. Final cases reflect a diversity of energy types and, to some extent, differences in the socio-economic and geographic attributes of the countries. The technologies represent some of the more economically-competitive substitutes for fossil fuels. It’s important to emphasize that the number of cases was neither exhaustive nor fully representative. Instead, the cases reflect an illustrative group of newer, low carbon energy technologies for in depth evaluation. Each of the cases shares certain, basic similarities. These include a national energy system comprised of actors, inputs, and outputs with systemic architecture connecting the constituent parts in a complex network of energy-centered flows over time—including extraction, production, sale, delivery, regulation, and consumption.


2013 ◽  
Vol 12 (4) ◽  
pp. 374-383 ◽  

Global warming is one of the most serious challenges facing humankind as it has the potential to dramatically modify the living conditions of future generations. In order to reduce the emission of greenhouse gases, most countries are implementing regulations aimed at reducing their dependence on fossil fuels, promoting energy efficiency practices and favoring the deployment of low carbon energy technologies, including renewable energy sources. In line with the international commitments assumed as a member of the European Union (EU) and also as a signatory of the Kyoto Protocol, Spain developed a National Plan for Renewable Energies (PER 2005-2010) that forms the basis of the national strategy in this field. Spain has often been cited as an example for the rapid growth in the use of low carbon energy technologies. However, despite significant progress in the last decade, Spain is far from meeting the national objectives set in PER primarily due to slow growth in the demand for biofuels and the limited success of biomass fired power plants. The evolution in other energy technologies has been faster, situating Spain as world a leader in solar and wind energy. However, the contribution of these technologies to the national consumption is very marginal. In the midst of intense regulatory, commercial and R&D activity, this paper analyses the current situation with respect to the production of renewable energies in Spain, focusing primarily on the use of biomass resources. The paper offers a general view of policy and regulatory background, illustrates current progress towards meeting national objectives and provides a brief description of representative projects and market activity in biofuel production and biomass valorization.


2021 ◽  
pp. 177-198
Author(s):  
Steffi Schreiber ◽  
Christoph Zöphel ◽  
Dominik Möst

AbstractThe expansion of renewable energy sources (RES) and the electrification of demand side sectors raise the need for power system flexibility. The following model-based analysis illustrates the complexity of the European energy system transformation with pathways regarding the RES expansion, sector coupling, and different levels of flexibility provision. Differences occur concerning the optimal mix of flexibility options between the moderate and ambitious climate target scenarios. Dispatchable back-up capacities are necessary, also in presence of high RES shares. Here, CO2 prices influence the role of low-carbon technologies. Due to cross-sectoral interactions, energy storages have a limited value. For the ambitious scenarios, the emission reductions come close to the Green Deal targets of the European Commission, while levelized costs of electricity increase moderately compared to the less ambitious scenario.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Pablo del Río ◽  
Luis Janeiro

Renewable energy sources (RES) play a critical role in the low-carbon energy transition. Although there is quite an abundant literature on the barriers to RES, the analysis of the electricity generation overcapacity as a barrier to further RES penetration has received scant attention. This paper tries to cover this gap. Its aim is to analyse the causes and consequences of overcapacity, with a special focus on the impact on RES deployment, using Spain as a case study. It also analyses the policies which may mitigate this problem in both the short and the longer terms.


2021 ◽  
Vol 250 ◽  
pp. 03001
Author(s):  
Natalya Danilina ◽  
Irina Reznikova

Renewable energy technologies (RET) that emerged as a result of the shift towards the renewable energy sources (RES) which aims at setting the path towards decentralized low-carbon energy systems intended for tackling global warming are becoming key elements of the smart grids of the future. Our paper applies the economic, social and technological model of the renewable energy platforms to the energy markets of the 21st century. The paper analyses the growing importance of the individual players (prosumers) on the energy market, especially when it comes to the renewable energy generation and trading. It shows that modern advanced information and communication technologies enabled the energy prosumers to trade their energy and information in two-way flows. All of these might be important for the transition towards sustainable economy and green technology.


2021 ◽  
Author(s):  
Aleksander Wasiuta

Abstract BackgroundThe characteristic feature of modern energy sector in the EU is the development of environmentally friendly technologies based on renewable energy sources (RES). The use of alternative and RES contributes to resolving not only energy efficiency issues, but many of the environmental, economic and social problems. RES are also one of the priorities of the world's low carbon policy and reducing CO2 emissions into the atmosphere. Growing electrical energy consumption and increasing integration of RES in power systems have led to new challenges, thus it is required to investigate and properly analyze the impact of integrated RES on the power system as a substitute for fossil fuel resources.ResultsThe aim of the article is to show the possibilities of developing RES in Poland in the context of environmental protection, energy self-sufficiency and international obligations. The depletion of primary energy sources and the increase in emissions of greenhouse gases to the atmosphere forces undertaking certain activities, aimed at seeking substitutes for fossil fuels. According to the author’s analysis, RES are the best and safest substitutes for traditional energy resources such as fossil fuel.ConclusionsThe author examines electricity production mix in EU counties and compares it to Polish energy sector. Taking into consideration the transmission network density in Poland, while energy sector changes its structure and expands, the mix of technologies deployed to produce electricity determines the associated burden on transmission networks. Polish energy sector development in the context of modernization of transmission grid provides an opportunity for investors to prepare the energy system for increasing the share of renewable energy sources. In the process of implementing the appropriate solution, the experiences of other countries that have significantly increased the share of renewable energy in the past could be used. This article presents the main areas of action that may facilitate the further integration of different energy sources in the specific context of Poland's changing energy system. Not all integration options will be important for Poland at the same time.


2019 ◽  
Vol 114 ◽  
pp. 05001 ◽  
Author(s):  
Oleg V. Marchenko ◽  
Sergei V. Solomin

A review of the methods and models used at the ESI SB RAS to assess the effectiveness of renewable energy sources (RES) was carried out. Criteria were formulated and calculation formulas were given for a preliminary assessment of the competitiveness of renewable energy sources as compared to alternative energy supply options. A mathematical model of the world energy system was considered, where renewable energy sources were described by averaged indicators. The model allows for different scenarios of external conditions to explore the prospects for the development of energy technologies, including renewable energy sources. For the analysis of autonomous energy systems with RES, a simulation model was developed so as to treat the processes of production, consumption, and energy storage in their dynamics. The optimization version of the mathematical model eliminates the need for a pre-assignment of the energy flow control algorithm. In this case, it is possible to study systems with the simultaneous presence of several units of energy storage of various types. For the study of renewable energy sources under market conditions, a model was developed so as to take into account the presence of various decision-making hubs, as well as the impact of governmental regulatory bodies in the market. It was shown that the most efficient mechanism for encouraging the development of renewable energy sources is the creation of a market for "green certificates", with the least efficient renewable energy sources to be subsidized.


Sign in / Sign up

Export Citation Format

Share Document