Effect of Heat Treatment on Mechanical Properties of an Aluminum Alloy and Aluminum Alloy Composite: A Comparative Study

Author(s):  
Shaik Mozammil ◽  
Jimmy Karloopia ◽  
Pradeep Kumar Jha ◽  
T. S. Srivatsan
Alloy Digest ◽  
1986 ◽  
Vol 35 (7) ◽  

Abstract UNS No. A97075 is a wrought precipitation-hardenable aluminum alloy. It has excellent mechanical properties, workability and response to heat treatment and refrigeration. Its typical uses comprise aircraft structural parts and other highly stressed structural applications where very high strength and good resistance to corrosion are required. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fatigue. It also includes information on low temperature performance as well as forming, heat treating, and machining. Filing Code: Al-269. Producer or source: Various aluminum companies.


2013 ◽  
Vol 829 ◽  
pp. 62-66 ◽  
Author(s):  
Alireza Fallahi ◽  
Hossein Hosseini-Toudeshky ◽  
Seyed Mahmoud Ghalehbandi

It is the objective of this study to investigate the effect of ECAP processing and heat treatment on the mechanical properties of the UFG 7075 alloy. Also the effect of post ECAP heat treatment is investigated. The alloy is processed by ECAP after annealing as well as solution treatment to produce an UFG structure. Furthermore mechanical properties and their variations during annealing and aging are investigated. The hardness of the pre-ECAP annealed and the pre-ECAP solutionised 7075 aluminum alloy has increased significantly compared with that of the CG sample. Also hardness of ECAPed specimen has not experienced significant changes in post-ECAP heat treatment and indicated that the alloy had approximately good thermal stability.


2010 ◽  
Vol 654-656 ◽  
pp. 1420-1423 ◽  
Author(s):  
Chun Wei Su ◽  
Peng Hooi Oon ◽  
Y.H. Bai ◽  
Anders W.E. Jarfors

The liquid forging process has the flexibilities of casting in forming intricate profiles and features while imparting the liquid forged components with superior mechanical strength compared to similar components obtained via casting. Additionally, liquid forging requires significantly lower machine loads compared to solid forming processes. Currently, components that are formed by liquid forging are usually casting alloys of aluminum. This paper investigates the suitability of liquid forging a wrought aluminum alloy Al-6061 and the mechanical properties after forming. The proper handling of the Al-6061 alloy in its molten state is important in minimizing oxidation of its alloying elements. By maintaining the correct alloying composition of Al-6061 after liquid forging, these Al-6061 samples can subsequently undergo a suitable heat treatment process to significantly improve their yield strengths. Results show that the yield strengths of these liquid forged Al-6061 samples can be increased from about 90MPa, when they are in the as-liquid forged state, to about 275MPa after heat treatment. This improved yield strength is comparable to that of Al-6061 samples obtained by solid forming processes. As such, the liquid forging process here has been shown to be capable of forming wrought aluminum alloy components that has the potential for structural applications.


2015 ◽  
Vol 1120-1121 ◽  
pp. 1109-1114
Author(s):  
Xin Lei ◽  
Hui Huang ◽  
S.P. Wen

This study investigated the mechanical properties and microstructures of Er-containing Al–Mg alloys. The research found that the H114-T sheet of Er-containing Al–Mg alloys showed a relative good comprehensive performance in mechanical properties. With the special rolling and heat treatment process, this H114-T sheet showed different morphology of microstructures with the other sheets in Er-containing Al–Mg alloys. Grains in H114-T sheet performed irregular shape polygon, a number of subgrains appeared in grains, the amount of dislocations in grains decreased. H114-T sheet possessed a lot of Copper texture, this may be one of important factors influenced the mechanical properties.


2018 ◽  
Vol 275 ◽  
pp. 81-88
Author(s):  
Monika Karoń ◽  
Marcin Adamiak

The purpose of this paper is to present the microstructure and mechanical behavior of 6060 aluminum alloy after intense plastic deformation. Equal Channel Angular Pressing (ECAP) was used as a method of severe plastic deformation. Before ECAP part of the samples were heat treated to remove internal stresses in the commercially available aluminium alloy. The evolution of microstructure and tensile strength were tested after 1, 3, 6 and 9 ECAP passes in annealed and non annealed states. It was found that intensely plastically deformed refined grains were present in the tested samples and exhibited increased mechanical properties. Differences were noted between samples without and after heat treatment


2014 ◽  
Vol 875-877 ◽  
pp. 1397-1405 ◽  
Author(s):  
G. Dinesh Babu ◽  
M. Nageswara Rao

Cast aluminum alloy 354 is used extensively for production of critical automobile components, owing to its excellent castability and attractive combination of mechanical properties after heat-treatment. With the advent of higher performance engines, there has been a steady demand to further improve the mechanical behavior of the castings made of the alloy, among others, through improvements in processing. The present study explores the possibility of improving tensile properties of the alloy by adopting certain non-conventional aging treatments. The non-conventional treatments include aging cycles similar to T6I4 and T6I6 referred to in the published literature, artificial aging in two steps instead of in single step and artificial aging preceded by various natural aging times. The results show that none of these non-conventional treatments leads to improvement of all tensile properties compared to the standard T61 treatment. Significant hardening takes place in the alloy due to natural aging. Changing the time of natural aging preceding artificial aging was found to have little effect on tensile properties.


Sign in / Sign up

Export Citation Format

Share Document