Low Cost and User Friendly IoT Laboratory: Design and Implementation

Author(s):  
Mostafa M. Soliman ◽  
Ishwar Singh
2012 ◽  
Vol 44 (2) ◽  
pp. 75-93
Author(s):  
Peter Mortensen

This essay takes its cue from second-wave ecocriticism and from recent scholarly interest in the “appropriate technology” movement that evolved during the 1960s and 1970s in California and elsewhere. “Appropriate technology” (or AT) refers to a loosely-knit group of writers, engineers and designers active in the years around 1970, and more generally to the counterculture’s promotion, development and application of technologies that were small-scale, low-cost, user-friendly, human-empowering and environmentally sound. Focusing on two roughly contemporary but now largely forgotten American texts Sidney Goldfarb’s lyric poem “Solar-Heated-Rhombic-Dodecahedron” (1969) and Gurney Norman’s novel Divine Right’s Trip (1971)—I consider how “hip” literary writers contributed to eco-technological discourse and argue for the 1960s counterculture’s relevance to present-day ecological concerns. Goldfarb’s and Norman’s texts interest me because they conceptualize iconic 1960s technologies—especially the Buckminster Fuller-inspired geodesic dome and the Volkswagen van—not as inherently alienating machines but as tools of profound individual, social and environmental transformation. Synthesizing antimodernist back-to-nature desires with modernist enthusiasm for (certain kinds of) machinery, these texts adumbrate a humanity- and modernity-centered post-wilderness model of environmentalism that resonates with the dilemmas that we face in our increasingly resource-impoverished, rapidly warming and densely populated world.


2021 ◽  
Vol 11 (6) ◽  
pp. 2803
Author(s):  
Jae-Woo Kim ◽  
Dong-Seong Kim ◽  
Seung-Hwan Kim ◽  
Sang-Moon Shin

A quad, small form-factor pluggable 28 Gbps optical transceiver design scheme is proposed. It is capable of transmitting 50 Gbps of data up to a distance of 40 km using modulation signals with a level-four pulse-amplitude. The proposed scheme is designed using a combination of electro-absorption-modulated lasers, transmitter optical sub-assembly, low-cost positive-intrinsic-native photodiodes, and receiver optical sub-assembly to achieve standard performance and low cost. Moreover, the hardware and firmware design schemes to implement the optical transceiver are presented. The results confirm the effectiveness of the proposed scheme and the performance of the manufactured optical transceiver, thereby confirming its applicability to real industrial sites.


HardwareX ◽  
2021 ◽  
pp. e00186
Author(s):  
Adolf Krige ◽  
Jakub Haluška ◽  
Ulrika Rova ◽  
Paul Christakopoulos

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Yehe Liu ◽  
Andrew M. Rollins ◽  
Richard M. Levenson ◽  
Farzad Fereidouni ◽  
Michael W. Jenkins

AbstractSmartphone microscopes can be useful tools for a broad range of imaging applications. This manuscript demonstrates the first practical implementation of Microscopy with Ultraviolet Surface Excitation (MUSE) in a compact smartphone microscope called Pocket MUSE, resulting in a remarkably effective design. Fabricated with parts from consumer electronics that are readily available at low cost, the small optical module attaches directly over the rear lens in a smartphone. It enables high-quality multichannel fluorescence microscopy with submicron resolution over a 10× equivalent field of view. In addition to the novel optical configuration, Pocket MUSE is compatible with a series of simple, portable, and user-friendly sample preparation strategies that can be directly implemented for various microscopy applications for point-of-care diagnostics, at-home health monitoring, plant biology, STEM education, environmental studies, etc.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 697
Author(s):  
Siming Lu ◽  
Sha Lin ◽  
Hongrui Zhang ◽  
Liguo Liang ◽  
Shien Shen

Respiratory viral infections threaten human life and inflict an enormous healthcare burden worldwide. Frequent monitoring of viral antibodies and viral load can effectively help to control the spread of the virus and make timely interventions. However, current methods for detecting viral load require dedicated personnel and are time-consuming. Additionally, COVID-19 detection is generally relied on an automated PCR analyzer, which is highly instrument-dependent and expensive. As such, emerging technologies in the development of respiratory viral load assays for point-of-care (POC) testing are urgently needed for viral screening. Recent advances in loop-mediated isothermal amplification (LAMP), biosensors, nanotechnology-based paper strips and microfluidics offer new strategies to develop a rapid, low-cost, and user-friendly respiratory viral monitoring platform. In this review, we summarized the traditional methods in respiratory virus detection and present the state-of-art technologies in the monitoring of respiratory virus at POC.


Sign in / Sign up

Export Citation Format

Share Document