Nonlinear Smoothing of Core Body Temperature Data with Random Gaps and Outliers (DRAGO)

2020 ◽  
pp. 63-84
Author(s):  
A. Parekh ◽  
I. W. Selesnick ◽  
A. Baroni ◽  
O. M. Bubu ◽  
A. W. Varga ◽  
...  
1997 ◽  
Vol 36 (04/05) ◽  
pp. 306-310 ◽  
Author(s):  
T. Nakano ◽  
E. Koyama ◽  
T. Imai ◽  
H. Hagiwara

Abstract.In field measurements, monitoring of core body temperature is influenced by physical activities; therefore, the estimation of circadian rhythm from the data may not be exact. The purpose of this study is to design a core body temperature filter in order to reduce artifacts induced by physical activities using simultaneously recorded physiological data such as heart rate data.The effects of physical activities on core body temperature and heart rate are assessed through three experiments. Based on the above knowledge, a core body temperature filter was designed. The filter removes part of rectal temperature data as artifact when heart rate rises above a predetermined threshold. As a result, most of the spike-like noise was removed and the filtered temperature data showed sinusoidal variation more than the unfiltered data. The mesor of the estimated rhythm significantly decreased. This filtering method can provide more precise information about circadian rhythm, especially in field measurements.


Author(s):  
H. Harlow ◽  
T. Lohuis ◽  
R. Anderson-Sprecher ◽  
T. Beck

Temperature data sensors were placed in the abdominal cavity, on the neck and outside the den of 5 black bears (Ursus americanus) during early winter and removed at the end of winter prior to the bear's leaving their den. Abdominal temperature remained around 35°-36°C and did not appear to exhibit circadian rhythmicity. Neck surface temperature of bears, however, demonstrated elevated spikes from 2° to 30°C about 4 times each day. We suggest that bears engage in bouts of muscular activity during the winter denning period to retain muscle strength and may vasodilate the skin to dissipate the heat rather than elevate their core body temperature and arouse from torpor.


2012 ◽  
Vol 26 (2) ◽  
Author(s):  
Joanna Pawlak ◽  
Paweł Zalewski ◽  
Jacek J. Klawe ◽  
Monika Zawadka ◽  
Anna Bitner ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2316
Author(s):  
Daniel Mota-Rojas ◽  
Dehua Wang ◽  
Cristiane Gonçalves Titto ◽  
Jocelyn Gómez-Prado ◽  
Verónica Carvajal-de la Fuente ◽  
...  

Body-temperature elevations are multifactorial in origin and classified as hyperthermia as a rise in temperature due to alterations in the thermoregulation mechanism; the body loses the ability to control or regulate body temperature. In contrast, fever is a controlled state, since the body adjusts its stable temperature range to increase body temperature without losing the thermoregulation capacity. Fever refers to an acute phase response that confers a survival benefit on the body, raising core body temperature during infection or systemic inflammation processes to reduce the survival and proliferation of infectious pathogens by altering temperature, restriction of essential nutrients, and the activation of an immune reaction. However, once the infection resolves, the febrile response must be tightly regulated to avoid excessive tissue damage. During fever, neurological, endocrine, immunological, and metabolic changes occur that cause an increase in the stable temperature range, which allows the core body temperature to be considerably increased to stop the invasion of the offending agent and restrict the damage to the organism. There are different metabolic mechanisms of thermoregulation in the febrile response at the central and peripheral levels and cellular events. In response to cold or heat, the brain triggers thermoregulatory responses to coping with changes in body temperature, including autonomic effectors, such as thermogenesis, vasodilation, sweating, and behavioral mechanisms, that trigger flexible, goal-oriented actions, such as seeking heat or cold, nest building, and postural extension. Infrared thermography (IRT) has proven to be a reliable method for the early detection of pathologies affecting animal health and welfare that represent economic losses for farmers. However, the standardization of protocols for IRT use is still needed. Together with the complete understanding of the physiological and behavioral responses involved in the febrile process, it is possible to have timely solutions to serious problem situations. For this reason, the present review aims to analyze the new findings in pathophysiological mechanisms of the febrile process, the heat-loss mechanisms in an animal with fever, thermoregulation, the adverse effects of fever, and recent scientific findings related to different pathologies in farm animals through the use of IRT.


Sign in / Sign up

Export Citation Format

Share Document