Energy Efficiency Indicators for Textile Industry Based on a Self-analysis Tool

Author(s):  
Samuele Branchetti ◽  
Carlo Petrovich ◽  
Gessica Ciaccio ◽  
Piero De Sabbata ◽  
Angelo Frascella ◽  
...  
Author(s):  
Xiaoyan Wang ◽  
Jinmei Du ◽  
Changhai Xu

Abstract:: Activated peroxide systems are formed by adding so-called bleach activators to aqueous solution of hydrogen peroxide, developed in the seventies of the last century for use in domestic laundry for their high energy efficiency and introduced at the beginning of the 21st century to the textile industry as an approach toward overcoming the extensive energy consumption in bleaching. In activated peroxide systems, bleach activators undergo perhydrolysis to generate more kinetically active peracids that enable bleaching under milder conditions while hydrolysis of bleach activators and decomposition of peracids may occur as side reactions to weaken the bleaching efficiency. This mini-review aims to summarize these competitive reactions in activated peroxide systems and their influence on bleaching performance.


2021 ◽  
Vol 13 (11) ◽  
pp. 6482
Author(s):  
Sergejus Lebedevas ◽  
Laurencas Raslavičius

A study conducted on the high-speed diesel engine (bore/stroke: 79.5/95.5 mm; 66 kW) running with microalgae oil (MAO100) and diesel fuel (D100) showed that, based on Wibe parameters (m and φz), the difference in numerical values of combustion characteristics was ~10% and, in turn, resulted in close energy efficiency indicators (ηi) for both fuels and the possibility to enhance the NOx-smoke opacity trade-off. A comparative analysis by mathematical modeling of energy and traction characteristics for the universal multi-purpose diesel engine CAT 3512B HB-SC (1200 kW, 1800 min−1) confirmed the earlier assumption: at the regimes of external speed characteristics, the difference in Pme and ηi for MAO100 and D100 did not exceeded 0.7–2.0% and 2–4%, respectively. With the refinement and development of the interim concept, the model led to the prognostic evaluation of the suitability of MAO100 as fuel for the FPT Industrial Cursor 13 engine (353 kW, 6-cylinders, common-rail) family. For the selected value of the indicated efficiency ηi = 0.48–0.49, two different combinations of φz and m parameters (φz = 60–70 degCA, m = 0.5 and φz = 60 degCA, m = 1) may be practically realized to achieve the desirable level of maximum combustion pressure Pmax = 130–150 bar (at α~2.0). When switching from diesel to MAO100, it is expected that the ηi will drop by 2–3%, however, an existing reserve in Pmax that comprises 5–7% will open up room for further optimization of energy efficiency and emission indicators.


2021 ◽  
Vol 13 (4) ◽  
pp. 1605
Author(s):  
Shuangjie Li ◽  
Hongyu Diao ◽  
Liming Wang ◽  
Chunqi Li

Energy efficiency is crucial to the 2030 UN Sustainable Development Goals (SDGs), but its widely measured indicator, energy intensity, is still insufficient. For this reason, in 2006, total factor energy efficiency (TFEE) was proposed with capital, labor, and energy as inputs and GDP as the desirable output. The later TFEE approach further incorporated pollution as the undesirable output. However, it is problematic to regard GDP (the total value of final products) as the desirable output, because GDP does not include the intermediate consumption, which accounts for a large part of the production activities and may even be larger than the value of GDP. GDP is more suitable for measuring distribution, while VO (value of output) is more appropriate for sustainable production analysis. Therefore, we propose a VO TFEE approach that takes VO as the desirable output instead and correspondingly incorporates the other intermediate materials and services except energy into inputs. Finally, the empirical analysis of the textile industry of EU member states during 2011–2017 indicates that the VO TFEE approach is more stable and convergent in measuring energy efficiency, and is more suitable for helping policymakers achieve the SDGs of energy saving, emissions reduction, and sustainable economic development.


Energy Policy ◽  
2020 ◽  
Vol 137 ◽  
pp. 111089 ◽  
Author(s):  
Raúl Velasco-Fernández ◽  
Tessa Dunlop ◽  
Mario Giampietro

Author(s):  
Zhendong Liu ◽  
Mats Berg ◽  
Tohmmy Bustad

Improving energy efficiency and reducing CO2 emissions are becoming very essential worldwide. To encourage the development and application of energy-efficient and low-emission technologies and to increase people's awareness of energy-saving, many energy labelling systems are developed and utilized in most countries. Since energy labelling systems have a significant impact, more and more sectors are developing their energy labelling systems to have their products included. Globally, the transport sector consumes a great proportion of energy and is responsible for considerable CO2 emissions. Although rail vehicles have relatively high energy efficiency, a labelling system has not been developed in the railway sector, whereas other modes of transport have developed energy efficiency indicators or energy labelling systems. Therefore, it is necessary to develop an energy labelling system for rail vehicles to promote rail transport and develop the technology of rail vehicles. First, this paper gives a review of the existing energy labelling systems. Second, it summarizes the rail needs and rail stakeholders’ interests regarding energy efficiency and corresponding labelling. Last but not least, a proposal for an energy labelling system for rail vehicles is given.


Author(s):  
Edgar Sandoval-García ◽  
Yasuhiro Matsumoto Kuwabara ◽  
Diana Sánchez-Partida

Sign in / Sign up

Export Citation Format

Share Document