Development of Morphological Segmentation for the Kyrgyz Language on Complete Set of Endings

Author(s):  
Aigerim Toleush ◽  
Nella Israilova ◽  
Ualsher Tukeyev
1969 ◽  
Vol 8 (02) ◽  
pp. 84-90 ◽  
Author(s):  
A. W. Pratt ◽  
M. Pacak

The system for the identification and subsequent transformation of terminal morphemes in medical English is a part of the information system for processing pathology data which was developed at the National Institutes of Health.The recognition and transformation of terminal morphemes is restricted to classes of adjectivals including the -ING and -ED forms, nominals and homographic adjective/noun forms.The adjective-to-noun and noun-to-noun transforms consist basically of a set of substitutions of adjectival and certain nominal suffixes by a set of suffixes which indicate the corresponding nominal form(s).The adjectival/nominal suffix has a polymorphosyntactic transformational function if it has the property of being transformed into more than one nominalizing suffix (e.g., the adjectival suffix -IC can be substituted by a set of nominalizing suffixes -Ø, -A, -E, -Y, -IS, -IA, -ICS): the adjectival suffix has a monomorphosyntactic transformational property if there is only one admissible transform (e.g., -CIC → -X).The morphological segmentation and the subsequent transformations are based on the following principles:a. The word form is segmented according to the principle of »double consonant cut,« i.e., terminal characters following the last set of double consonants are analyzed and treated as a potential suffix. For practical purposes only such terminal suffixes of a maximum length of four have been analyzed.b. The principle that the largest segment of a word form common to both adjective and noun or to both noun stems is retained as a word base for transformational operations, and the non-identical segment is considered to be a »suffix.«The backward right-to-left character search is initiated by the identification of the terminal grapheme of the given word form and is extended to certain admissible sequences of immediately preceding graphemes.The nodes which represent fixed sequences of graphemes are labeled according to their recognition and/or transformation properties.The tree nodes are divided into two groups:a. productive or activatedb. non-productive or non-activatedThe productive (activated) nodes are sequences of sets of graphemes which possess certain properties, such as the indication about part-of-speech class membership, the transformation properties, or both. The non-productive (non-activated) nodes have the function of connectors, i.e., they specify the admissible path to the productive nodes.The computer program for the identification and transformation of the terminal morphemes is open-ended and is already operational. It will be extended to other sub-fields of medicine in the near future.


2018 ◽  
Author(s):  
Anthony Nash ◽  
Nora H de Leeuw ◽  
Helen L Birch

<div> <div> <div> <p>The computational study of advanced glycation end-product cross- links remains largely unexplored given the limited availability of bonded force constants and equilibrium values for molecular dynamics force fields. In this article, we present the bonded force constants, atomic partial charges and equilibrium values of the arginine-lysine cross-links DOGDIC, GODIC and MODIC. The Hessian was derived from a series of <i>ab initio</i> quantum mechanical electronic structure calculations and from which a complete set of force constant and equilibrium values were generated using our publicly available software, ForceGen. Short <i>in vacuo</i> molecular dynamics simulations were performed to validate their implementation against quantum mechanical frequency calculations. </p> </div> </div> </div>


1998 ◽  
Vol 37 (4-5) ◽  
pp. 609-613
Author(s):  
J. Pramanik ◽  
P. L. Trelstad ◽  
J. D. Keasling

Enhanced biological phosphorus removal (EBPR) in wastewater treatment involves metabolic cycling through the biopolymers polyphosphate (polyP), polyhydroxybutyrate (PHB), and glycogen. This cycling is induced through treatment systems that alternate between carbon-rich anaerobic and carbon-poor aerobic reactor basins. While the appearance and disappearance of these biopolymers has been documented, the intracellular pressures that regulate their synthesis and degradation are not well understood. Current models of the EBPR process have examined a limited number of metabolic pathways that are frequently lumped into an even smaller number of “reactions.” This work, on the other hand, uses a stoichiometric model that contains a complete set of the pathways involved in bacterial biomass synthesis and energy production to examine EBPR metabolism. Using the stoichiometric model we were able to analyze the role of EBPR metabolism within the larger context of total cellular metabolism, as well as predict the flux distribution of carbon and energy fluxes throughout the total reaction network. The model was able to predict the consumption of PHB, the degradation of polyP, the uptake of acetate and the release of Pi. It demonstrated the relationship between acetate uptake and Pi release, and the effect of pH on this relationship. The model also allowed analysis of growth metabolism with respect to EBPR.


2019 ◽  
Vol 13 (2) ◽  
pp. 159-165
Author(s):  
Manik Sharma ◽  
Gurvinder Singh ◽  
Rajinder Singh

Background: For almost every domain, a tremendous degree of data is accessible in an online and offline mode. Billions of users are daily posting their views or opinions by using different online applications like WhatsApp, Facebook, Twitter, Blogs, Instagram etc. Objective: These reviews are constructive for the progress of the venture, civilization, state and even nation. However, this momentous amount of information is useful only if it is collectively and effectively mined. Methodology: Opinion mining is used to extract the thoughts, expression, emotions, critics, appraisal from the data posted by different persons. It is one of the prevailing research techniques that coalesce and employ the features from natural language processing. Here, an amalgamated approach has been employed to mine online reviews. Results: To improve the results of genetic algorithm based opining mining patent, here, a hybrid genetic algorithm and ontology based 3-tier natural language processing framework named GAO_NLP_OM has been designed. First tier is used for preprocessing and corrosion of the sentences. Middle tier is composed of genetic algorithm based searching module, ontology for English sentences, base words for the review, complete set of English words with item and their features. Genetic algorithm is used to expedite the polarity mining process. The last tier is liable for semantic, discourse and feature summarization. Furthermore, the use of ontology assists in progressing more accurate opinion mining model. Conclusion: GAO_NLP_OM is supposed to improve the performance of genetic algorithm based opinion mining patent. The amalgamation of genetic algorithm, ontology and natural language processing seems to produce fast and more precise results. The proposed framework is able to mine simple as well as compound sentences. However, affirmative preceded interrogative, hidden feature and mixed language sentences still be a challenge for the proposed framework.


1990 ◽  
Vol 55 (12) ◽  
pp. 2889-2897
Author(s):  
Jaroslav Holoubek

Recent theoretical work has shown that the complete set of polarized elastic light-scattering studies should yield information about scatterer structure that has so far hardly been utilized. We present here calculations of angular dependences of light-scattering matrix elements for spheres near the Rayleigh and Rayleigh-Gans-Debye limits. The significance of single matrix elements is documented on examples that show how different matrix elements respond to changes in particle parameters. It appears that in the small-particle limit (Rg/λ < 0.1) we do not loose much information by ignoring "large particle" observables.


Sign in / Sign up

Export Citation Format

Share Document