Energy Dissipation Capacity of RC Columns Subjected to Dynamic Biaxial Seismic Loadings on a Shake Table

Author(s):  
Amadeo Benavent-Climent ◽  
David Escolano-Margarit ◽  
Leandro Morillas
1996 ◽  
Vol 12 (1) ◽  
pp. 145-162 ◽  
Author(s):  
G. Michele Calvi ◽  
Gregory R. Kingsley ◽  
Guido Magenes

The experimental evaluation of strength, deformability, and energy dissipation capacity of unreinforced masonry buildings subjected to seismic loadings presents unique and complex problems, both for laboratory and field evaluations. The paper addresses these problems, focusing on the relative merits and roles of several experimental techniques, including quasistatic, dynamic, and pseudodynamic loadings at full and reduced scale.


2021 ◽  
Vol 60 (1) ◽  
pp. 818-838
Author(s):  
Haiou Shi ◽  
Jinxia Zhao ◽  
Fangmu Chen ◽  
Junjin Lin ◽  
Jianhe Xie

Abstract Precast-reinforced concrete (RC) structures in urban rail transit projects can provide many advantages over their cast-in-place counterparts. However, lessons learned from past earthquakes show that beam-column joints may be a critical point of these structures and can overestimate the mechanical performance under vertical seismic loadings if not properly understood. This paper presents unbonded and bonded prestressed precast RC beam-column joints for elevated station platforms. Prestressed steel strands are used to provide joints with self-centring capacity. The performance of the proposed joints under vertical cyclic loadings is experimentally investigated and compared to that of monolithic joints in this study. The obtained results demonstrate the good properties of the proposed precast joints in terms of bearing capacity, energy dissipation capacity and ductility control. A comparison with a conventional monolithic beam-column joint indicates the better performance against earthquakes of the proposed precast prestressed joints, and the precast joint with symmetric prestressed steel strands in the top and bottom of the beam exhibits better flexural stiffness and energy dissipation capacity.


2019 ◽  
Vol 26 (1) ◽  
pp. 360-378 ◽  
Author(s):  
Liu Ming ◽  
Yin Shiping ◽  
Chen Wenjie

AbstractThis paper studied the confinement effect of textile layers and the stirrup ratio on the seismic behaviour of TRC-strengthened RC columns using the numerical method. The results showed that the numerical values have good consistency with the experimental. Within the range of 1 to 3 layers of textile, with the increase of the number of textile layers, the peak load, displacement ductility ratio and energy dissipation capacity of the columns increased; however, these parameters only exhibited a limited increase when the textile layers continued to increase. In addition, the textile layers had a slight influence on the rate of the energy dissipation capacity. With the increase of the stirrup ratio, the yield load, peak load and ultimate load of the column did not change significantly, but the ductility coefficient and energy dissipation capacity of the column increased. Furthermore, for a TRC-strengthened column with three layers of textile and a stirrup ratio of 0.34%, the hysteresis loop fullness and the bearing capacity are better than those of a column with two layers of textile and a stirrup ratio of 0.67%. Therefore, it can be seen that TRC could play an efficient constraint role on the column when the stirrup arrangement is less.


Metals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1099
Author(s):  
González-Sanz ◽  
Galé-Lamuela ◽  
Escolano-Margarit ◽  
Benavent-Climent

Shape memory alloys in the form of bars are increasingly used to control structures under seismic loadings. This study investigates the hysteretic behavior and the ultimate energy dissipation capacity of large-diameter NiTi bars subjected to low- and high-cycle fatigue. Several specimens are subjected to quasi-static and to dynamic cyclic loading at different frequencies. The influence of the rate of loading on the shape of the hysteresis loops is analysed in terms of the amount of dissipated energy, equivalent viscous damping, variations of the loading/unloading stresses, and residual deformations. It is found that the log-log scale shows a linear relationship between the number of cycles to failure and the normalized amount of energy dissipated in one cycle, both for low- and for high-cycle fatigue. Based on the experimental results, a numerical model is proposed that consists of two springs with different restoring force characteristics (flag-shape and elastic-perfectly plastic) connected in series. The model can be used to characterize the hysteretic behavior of NiTi bars used as energy dissipation devices in advanced earthquake resistant structures. The model is validated with shake table tests conducted on a reinforced concrete structure equipped with 12.7 mm diameter NiTi bars as energy dissipation devices.


2021 ◽  
Vol 248 ◽  
pp. 113220
Author(s):  
David Galé-Lamuela ◽  
Jesús Donaire-Ávila ◽  
Amadeo Benavent-Climent

2020 ◽  
Vol 10 (4) ◽  
pp. 1410 ◽  
Author(s):  
Guillermo González-Sanz ◽  
David Escolano-Margarit ◽  
Amadeo Benavent-Climent

This paper investigates a new stainless-steel tube-in-tube damper (SS-TTD) designed for the passive control of structures subjected to seismic loadings. It consists of two tubes assembled in a telescopic configuration. A series of slits are cut on the walls of the exterior tube in order to create a series of strips with a large height-to-width ratio. The exterior tube is connected to the interior tube so that when the brace-type damper is subjected to forced axial displacements, the strips dissipate energy in the form of flexural plastic deformations. The performance of the SS-TTD is assessed experimentally through quasi-static and dynamic shaking table tests. Its ultimate energy dissipation capacity is quantitatively evaluated, and a procedure is proposed to predict the failure. The cumulative ductility of the SS-TTD is about 4-fold larger than that reported for other dampers based on slit-type plates in previous studies. Its ultimate energy dissipation capacity is 3- and 16-fold higher than that of slit-type plates made of mild steel and high-strength steel, respectively. Finally, two hysteretic models are investigated and compared to characterise the hysteretic behaviour of the SS-TTD under arbitrarily applied cyclic loads.


2018 ◽  
Vol 2018 ◽  
pp. 1-15
Author(s):  
Qin Zhang ◽  
Zong-yan Wei ◽  
Jin-xin Gong ◽  
Ping Yu ◽  
Yan-qing Zhang

In order to determine the energy dissipation capacity of flexure critical reinforced concrete (RC) columns reasonably, an expression for describing the hysteretic behavior including loading and unloading characteristics of flexure critical RC columns is presented, and then, a new equivalent viscous damping (EVD) ratio model including its simplified format, which is interpreted as a function of a displacement ductility factor and a ratio of secant stiffness to yield stiffness of columns, is developed based on the proposed hysteretic loop expression and experimental data from the PEER column database. To illustrate the application of the proposed equivalent damping ratio model, a case study of pushover analysis on a flexure critical RC bridge with a single-column pier is provided. The analytical results are also compared with the results obtained by other models, which indicate that the proposed model is more general and rational in predicting energy dissipation capacity of flexure critical RC structures subjected to earthquake excitations.


Sign in / Sign up

Export Citation Format

Share Document