scholarly journals Human Body Simulation Within a Hybrid Operating Method for a Safe and Efficient Human-Robot Collaboration

Author(s):  
Kai Lemmerz ◽  
Bernd Kuhlenötter

AbstractThe planning and integration of production systems with a direct human-robot collaboration (HRC) is still associated with various technical challenges. This applies especially to the realization of the operation methods speed and separation monitoring (SSM) as well as power and force limiting (PFL). Due to the limited consideration of the human motion behaviour, the required dynamic separation distance in SSM is frequently oversized in practice. The main consequences are wasted space as well as cycle time and performance losses within the corresponding HRC application. In PFL a physical contact between the operator and robot is permissible, taking into account specified biomechanical thresholds. However, there is still a lack of suitable use-cases since the maximum permissible speeds are on a very low level. Moreover some thresholds regarding the transient contact case are still non-applicable for critical body areas (e.g. temple, middle of forehead). The study of this paper is related to a kinematic state determination of the human operator within a new hybrid collaborative operation. In this method the SSM type is extended regarding the description of the operator and coupled with the two-body contact model of the PFL. Using a planning and simulation tool for HRC, the kinematic states of different body regions are derived from an integrated and parameterized digital human model. Afterwards, these body regions are mapped to the characteristic body areas of the ISO/TS 15066, whereby the resulting information will be applied in an adaptive robot speed control. The performance of the presented concept will be evaluated using an exemplary simulated HRC scenario.

Author(s):  
Yujiang Xiang ◽  
Jasbir S. Arora ◽  
Salam Rahmatalla ◽  
Hyun-Joon Chung ◽  
Rajan Bhatt ◽  
...  

Human carrying is simulated in this work by using a skeletal digital human model with 55 degrees of freedom (DOFs). Predictive dynamics approach is used to predict the carrying motion with symmetric and asymmetric loads. In this process, the model predicts joints dynamics using optimization schemes and task-based physical constraints. The results indicated that the model can realistically match human motion and ground reaction forces data during symmetric and asymmetric load carrying task. With such prediction capability the model could be used for biomedical and ergonomic studies.


Author(s):  
Daniele Regazzoni ◽  
Andrea Vitali ◽  
Caterina Rizzi ◽  
Giorgio Colombo

A number of pathologies impact on the way a patient can either move or control the movements of the body. Traumas, articulation arthritis or generic orthopedic disease affect the way a person can walk or perform everyday movements; brain or spine issues can lead to a complete or partial impairment, affecting both muscular response and sensitivity. Each of these disorder shares the need of assessing patient’s condition while doing specific tests and exercises or accomplishing everyday life tasks. Moreover, also high-level sport activity may be worth using digital tools to acquire physical performances to be improved. The assessment can be done for several purpose, such as creating a custom physical rehabilitation plan, monitoring improvements or worsening over time, correcting wrong postures or bad habits and, in the sportive domain to optimize effectiveness of gestures or related energy consumption. The paper shows the use of low-cost motion capture techniques to acquire human motion, the transfer of motion data to a digital human model and the extraction of desired information according to each specific medical or sportive purpose. We adopted the well-known and widespread Mocap technology implemented by Microsoft Kinect devices and we used iPisoft tools to perform acquisition and the preliminary data elaboration on the virtual skeleton of the patient. The focus of the paper is on the working method that can be generalized to be adopted in any medical, rehabilitative or sportive condition in which the analysis of the motion is crucial. The acquisition scene can be optimized in terms of size and shape of the working volume and in the number and positioning of sensors. However, the most important and decisive phase consist in the knowledge acquisition and management. For each application and even for each single exercise or tasks a set of evaluation rules and thresholds must be extracted from literature or, more often, directly form experienced personnel. This operation is generally time consuming and require further iterations to be refined, but it is the core to generate an effective metric and to correctly assess patients and athletes performances. Once rules are defined, proper algorithms are defined and implemented to automatically extract only the relevant data in specific time frames to calculate performance indexes. At last, a report is generated according to final user requests and skills.


Proceedings ◽  
2019 ◽  
Vol 42 (1) ◽  
pp. 48 ◽  
Author(s):  
Tadele Belay Tuli ◽  
Martin Manns

Human-robot collaboration combines the extended capabilities of humans and robots to create a more inclusive and human-centered production system in the future. However, human safety is the primary concern for manufacturing industries. Therefore, real-time motion tracking is necessary to identify if the human worker body parts enter the restricted working space solely dedicated to the robot. Tracking these motions using decentralized and different tracking systems requires a generic model controller and consistent motion exchanging formats. In this work, our task is to investigate a concept for a unified real-time motion tracking for human-robot collaboration. In this regard, a low cost and game-based motion tracking system, e.g., HTC Vive, is utilized to capture human motion by mapping into a digital human model in the Unity3D environment. In this context, the human model is described using a biomechanical model that comprises joint segments defined by position and orientation. Concerning robot motion tracking, a unified robot description format is used to describe the kinematic trees. Finally, a concept of assembly operation that involves snap joining is simulated to analyze the performance of the system in real-time capability. The distribution of joint variables in spatial-space and time-space is analyzed. The results suggest that real-time tracking in human-robot collaborative assembly environments can be considered to maximize the safety of the human worker. However, the accuracy and reliability of the system regarding system disturbances need to be justified.


Author(s):  
Mahdiar Hariri

The ‘Hybrid Predictive Dynamics Method for Digital Human Modeling’ is analyzed in this work. The ‘Hybrid’ prefix mentioned in the literature recently [1], refers to the use of motion capture data for improving human motion simulations. This use of motion capture compensates for the inherent weaknesses of purely theoretical motion prediction due to deficiencies in computational power or available theoretical backgrounds. In this work, it is shown that while using the ‘Hybrid’ the more precisely and finely the human motion is modeled (if computational and theoretical limitations allow), the less will be the need for the ‘Hybrid’ method and the more will the human model be able to change the prediction if the inputs are varied (cause and effect). Several human motion scenarios are mentioned in this work. These motion tasks are: “Jogging around Markers”, “Rolling Over”, “Getting up from Prone”, “Vertical Jumping” and “Kneeling and Aiming”. The digital human model is a full-body, three dimensional model with 55 degrees of freedom. Six degrees of freedom specify the global position and orientation of the coordinate frame attached to the pelvic point of the digital human and 49 degrees of freedom represent the revolute joints which model the human joints and determine the kinematics of the entire digital human. Motion is generated by a multi-objective optimization approach. The optimization problem is subject to constraints which represent the limitations of the environment, the digital human model and the motion task. Design variables are the joint angle profiles. All the forces, inertial, gravitational as well as external, are known, except the ground reaction forces. The feasibility of the generation of that arbitrary motion by using the given ground contact areas is ensured by using the well-known Zero Moment Point (ZMP) constraint.


Author(s):  
Yujiang Xiang ◽  
Joo H. Kim ◽  
Hyun-Joon Chung ◽  
James Yang ◽  
Hyun-Jung Kwon

Human stair ascent and descent are simulated in this work by using a skeletal digital human model with 55 degrees of freedom (DOFs). Hybrid predictive dynamics approach is used to predict the stair climbing motion with weapons and backpacks. In this process, the model predicts joints dynamics using optimization schemes and task-based physical constraints. The results indicated that the model can realistically match human motion and ground reaction forces data during stair climbing tasks. This can be used in human health domain such as leg prosthesis design.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1791
Author(s):  
Chi Cuong Vu ◽  
Thanh Tai Nguyen ◽  
Sangun Kim ◽  
Jooyong Kim

Health monitoring sensors that are attached to clothing are a new trend of the times, especially stretchable sensors for human motion measurements or biological markers. However, price, durability, and performance always are major problems to be addressed and three-dimensional (3D) printing combined with conductive flexible materials (thermoplastic polyurethane) can be an optimal solution. Herein, we evaluate the effects of 3D printing-line directions (45°, 90°, 180°) on the sensor performances. Using fused filament fabrication (FDM) technology, the sensors are created with different print styles for specific purposes. We also discuss some main issues of the stretch sensors from Carbon Nanotube/Thermoplastic Polyurethane (CNT/TPU) and FDM. Our sensor achieves outstanding stability (10,000 cycles) and reliability, which are verified through repeated measurements. Its capability is demonstrated in a real application when detecting finger motion by a sensor-integrated into gloves. This paper is expected to bring contribution to the development of flexible conductive materials—based on 3D printing.


2014 ◽  
Vol 592-594 ◽  
pp. 2659-2664 ◽  
Author(s):  
T. Jeyakumar ◽  
R. Gandhinathan

India is the second largest 2W market in the world in terms of sales volumes after China. Motorcycles types that are marketed using sports tag are found to be anchored on performance attributes characterized by visual appeal, higher speeds, heady acceleration and superior ride, handling and braking. The chronograph of the sports segment in the Indian market is plotted. A goal defined design process is developed to produce creative ideas for aesthetic attributes-modern, youthful, aerodynamic, and aggressive. The optimal solution satisfying the aesthetic goal is determined using an operation decision making model based upon weighted generalized mean method. A motorcycle is generally straddled by the rider with manual transmission and can be considered as a constrained workstation. Some ergonomic considerations to fit users of different sizes on the same workstation should be taken into account when designing. A two-dimensional anthropometric data collection approach is followed for riders in India. The obtained anthropometric data concerning riding postures are used for posture analysis using digital human model in CAD software. The mutual trade-off between sporty riding style of the rider and comfort angles have been arrived to set up the final posture of the rider. The detailing of the appearance considering the aesthetic attributes and ergonomics are done. The developed design is aimed at improving appearance and ergonomic performance.


2019 ◽  
Vol 9 (1) ◽  
pp. 600-605 ◽  
Author(s):  
Gabriel Fedorko ◽  
Martin Vasil ◽  
Michaela Bartosova

AbstractIntra-plant transport systems within their operation directly impact on the performance of production systems. For their effective operation, it is, therefore, necessary to realize evaluation of operational performance and effectivity. For the realization of this type of evaluation, in addition to a wide range of sensors that can be difficult for installation and operation, we can also use indirect methods that are equally able to provide reliable operational characteristics. Indirect analytical methods are presented above all by the approach which is based on the use of simulation methods. The method of computer simulation provides a wide range of options for the evaluation of efficiency and performance. The paper describes the use of a simulation model created in the program Tecnomatix Plant Simulation for analyzing the supply of production workplaces within the MilkRun system.


2017 ◽  
Vol 57 (2) ◽  
pp. 338 ◽  
Author(s):  
Z. C. Nziku ◽  
G. C. Kifaro ◽  
L. O. Eik ◽  
T. Steine ◽  
T. Ådnøy

This research aimed at describing reasons for keeping dairy goats in Tanzania, and possible goals for a sustainable breeding program. Three districts, each representing a unique dairy goat breed population, were selected for the study. The Saanen, Toggenburg and Norwegian were the main dairy goat breeds in Arumeru, Babati, and Mvomero districts, respectively. A total of 125 dairy goat farmers were interviewed. A holistic approach of both quantitative and qualitative research methods was used to study the perceptions of farmers. More milk yield, sale of breeding stock and manure were the highest ranked reasons for keeping dairy goats. The reasons were coherent to the production systems. The three most preferred traits for improvement were milk yield, adaptability and twinning ability. These preferences were absolutely important in the context of the referred production system. Selection of replacement stock, animal identification and performance recording were the main challenges emphasised by farmers. The present study views these challenges as a result of knowledge gaps in animal breeding that require solutions. Based on result findings it is suggested that the milk yield and survival traits should be the primary dairy goat breeding goals. Generally, there are possibilities for developing sustainable dairy goat breeding programs in the surveyed areas given relevant breeding goals are incorporated. The design of simple and manageable dairy goat breeding schemes is necessary.


Sign in / Sign up

Export Citation Format

Share Document