Nonsteady Aerodynamics of Lifting and Non-lifting Surfaces

2021 ◽  
pp. 159-258
Author(s):  
Earl H. Dowell
Keyword(s):  
Author(s):  
Anders Hedenström

Animal flight represents a great challenge and model for biomimetic design efforts. Powered flight at low speeds requires not only appropriate lifting surfaces (wings) and actuator (engine), but also an advanced sensory control system to allow maneuvering in confined spaces, and take-off and landing. Millions of years of evolutionary tinkering has resulted in modern birds and bats, which are achieve controlled maneuvering flight as well as hovering and cruising flight with trans-continental non-stop migratory flights enduring several days in some bird species. Unsteady aerodynamic mechanisms allows for hovering and slow flight in insects, birds and bats, such as for example the delayed stall with a leading edge vortex used to enhance lift at slows speeds. By studying animal flight with the aim of mimicking key adaptations allowing flight as found in animals, engineers will be able to design micro air vehicles of similar capacities.


2016 ◽  
Vol 846 ◽  
pp. 535-540
Author(s):  
David J. Munk ◽  
David W. Boyd ◽  
Gareth A. Vio

Designing structures with frequency constraints is an important task in aerospace engineering. Aerodynamic loading, gust loading, and engine vibrations all impart dynamic loads upon an airframe. To avoid structural resonance and excessive vibration, the natural frequencies of the structure must be shifted away from the frequency range of any dynamic loads. Care must also be taken to ensure that the modal frequencies of a structure do not coalesce, which can lead to dramatic structural failure. So far in industry, no aircraft lifting surfaces are designed from the ground up with frequency optimisation as the primary goal. This paper will explore computational methods for achieving this task.This paper will present a topology optimisation algorithm employing the Solid Isotropic Microstructure with Penalisation (SIMP) method for the design of an optimal aircraft wing structure for rejection of frequency excitation.


AIAA Journal ◽  
1982 ◽  
Vol 20 (3) ◽  
pp. 348-355 ◽  
Author(s):  
T. Ueda ◽  
E. H. Dowell

2006 ◽  
Vol 19 (1) ◽  
pp. 24-30 ◽  
Author(s):  
Qing-zhen YANG ◽  
Zhong-yin ZHANG ◽  
Streit Thomas ◽  
Wichmann Georg ◽  
Yong ZHENG

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Adetunji Oduyela ◽  
Nathan Slegers

Birds and insects naturally use passive flexing of their wings to augment their stability in uncertain aerodynamic environments. In a similar manner, micro air vehicle designers have been investigating using wing articulation to take advantage of this phenomenon. The result is a class of articulated micro air vehicles where artificial passive joints are designed into the lifting surfaces. In order to analyze how passive articulation affects performance of micro air vehicles in gusty environments, an efficient 8 degree-of-freedom model is developed. Experimental validation of the proposed mathematical model was accomplished using flight test data of an articulated micro air vehicle obtained from a high resolution indoor tracking facility. Analytical investigation of the gust alleviation properties of the articulated micro air vehicle model was carried out using simulations with varying crosswind gust magnitudes. Simulations show that passive articulation in micro air vehicles can increase their robustness to gusts within a range of joint compliance. It is also shown that if articulation joints are made too compliant that gust mitigation performance is degraded when compared to a rigid system.


Author(s):  
C-E Janson

A potential-flow panel method is used to compute the waves and the lift force from surface-piercing and submerged bodies. In particular the interaction between the waves and the lift produced close to the free surface is studied. Both linear and non-linear free-surface boundary conditions are considered. The potential-flow method is of Rankine-source type using raised source panels on the free surface and a four-point upwind operator to compute the velocity derivatives and to enforce the radiation condition. The lift force is introduced as a dipole distribution on the lifting surfaces and on the trailing wake, together with a flow tangency condition at the trailing edge of the lifting surface. Different approximations for the spanwise circulation distribution at the free surface were tested for a surface-piercing wing and it was concluded that a double-model approximation should be used for low speeds while a single-model, which allows for a vortex at the free surface, was preferred at higher speeds. The lift force and waves from three surface-piercing wings, a hydrofoil and a sailing yacht were computed and compared with measurements and good agreement was obtained.


2022 ◽  
pp. 115148
Author(s):  
Galen W. Ng ◽  
Apoorv S. Vishneek ◽  
Joaquim R.R.A. Martins ◽  
Yin L. Young

Author(s):  
C. P. van Dam ◽  
C. Bauer ◽  
D. T. Yen Nakafuji

Micro-electro-mechanical (MEM) translational tabs are introduced for active lift control on aircraft. These tabs are mounted near the trailing edge of lifting surfaces such as aircraft wings and tails, deploy approximately normal to the surface, and have a maximum deployment height on the order of one percent of the section chord. Deployment of the tab effectively changes the sectional camber, thereby changing the aerodynamic characteristics of a lifting surface. Tabs with said deployment height generate a change in the section lift coefficient of approximately ±0.3. The microtab design and the techniques used to fabricate and test the tabs are presented.


Sign in / Sign up

Export Citation Format

Share Document