End-to-End Hand Rehabilitation System with Single-Shot Gesture Classification for Stroke Patients

Author(s):  
Wai Kin Koh ◽  
Quang H. Nguyen ◽  
Youheng Ou Yang ◽  
Tianma Xu ◽  
Binh P. Nguyen ◽  
...  
Author(s):  
Haruhisa Kawasaki ◽  
Satoshi Ueki ◽  
Satoshi Ito ◽  
Tetsuya Mouri

This chapter focuses on a patient self-controlled rehabilitation system using our developed exoskeleton-type hand-motion-assist robot and tele-rehabilitation. The virtual reality-enhanced new hand rehabilitation support system, which we have developed for stroke patients in the acute stage, is aiming to allow such patients to conduct every day exercises by themselves without supervisors. This system features a multi-DOF motion assistance device, a virtual reality interface for patients, and a symmetrical master-slave motion assistance training strategy called ”self-motion control”, in which the stroke patients' healthy hand on the master side creates the assistance motion for the impaired hand on the slave side. Moreover, a tele-rehabilitation system consisting of a hand rehabilitation support system for the patients, an anthropomorphic robot hand for the therapist, and a remote monitoring system for diagnosing the degree of recovery is explained.


2020 ◽  
pp. 838-873
Author(s):  
Haruhisa Kawasaki ◽  
Satoshi Ueki ◽  
Satoshi Ito ◽  
Tetsuya Mouri

This chapter focuses on a patient self-controlled rehabilitation system using our developed exoskeleton-type hand-motion-assist robot and tele-rehabilitation. The virtual reality-enhanced new hand rehabilitation support system, which we have developed for stroke patients in the acute stage, is aiming to allow such patients to conduct every day exercises by themselves without supervisors. This system features a multi-DOF motion assistance device, a virtual reality interface for patients, and a symmetrical master-slave motion assistance training strategy called ”self-motion control”, in which the stroke patients' healthy hand on the master side creates the assistance motion for the impaired hand on the slave side. Moreover, a tele-rehabilitation system consisting of a hand rehabilitation support system for the patients, an anthropomorphic robot hand for the therapist, and a remote monitoring system for diagnosing the degree of recovery is explained.


2018 ◽  
Vol 11 (1) ◽  
Author(s):  
Jiangbei Wang ◽  
Zhaoyu Liu ◽  
Yanqiong Fei

This work presents a lightweight soft rehabilitation glove that integrates finger and wrist function by developing and applying the double-DOF soft pneumatic bending actuators (DPBAs). The proposed soft glove can achieve separate as well as coordinated motion exercises of fingers and the wrist, which benefits stroke patients who have complicated hand impairment. It consists of a commercial glove extended by a customized wrist bracer, on which are installed three dorsal DPBAs through fingers (index/middle/ring) and the wrist, two dorsal single-DOF pneumatic bending actuators (SPBAs) through thumb/pinky, and three palmar SPBAs through wrist. The proposed DPBA has two independent bendable segments to actuate flexion of finger and wrist, respectively, whose multigait bending conforms with multipattern flexion of the biological hand. The SPBAs are used for actuating wrist extension or finger flexion. The proposed wrist bracer is designed as an extension of the glove to install the soft actuators and transfer their motion and force to the wearer's wrist efficiently as well as minimize unactuated restriction on the hand. To verify its feasibility, we evaluate the range of motion (ROM), strength and speed of five subjects' hands assisted by the glove in six different passive motions. Results show that the proposed glove can provide sufficient assistance for stroke patients in hand rehabilitation exercise. Furthermore, the soft glove has potential in extending the hand functional training from simple exercises such as closing/opening and gripping to complex ones such as weightlifting, writing, and screwing/unscrewing.


2022 ◽  
Vol 12 ◽  
Author(s):  
Contrada Marianna ◽  
Arcuri Francesco ◽  
Tonin Paolo ◽  
Pignolo Loris ◽  
Mazza Tiziana ◽  
...  

Introduction: Telerehabilitation (TR) is defined as a model of home service for motor and cognitive rehabilitation, ensuring continuity of care over time. TR can replace the traditional face-to-face approach as an alternative method of delivering conventional rehabilitation and applies to situations where the patient is unable to reach rehabilitation facilities or for low-income countries where outcomes are particularly poor. For this reason, in this study, we sought to demonstrate the feasibility and utility of a well-known TR intervention on post-stroke patients living in one of the poorest indebted regions of Italy, where the delivery of rehabilitation services is inconsistent and not uniform.Materials and Methods: Nineteen patients (13 male/6 female; mean age: 61.1 ± 8.3 years) with a diagnosis of first-ever ischemic (n = 14) or hemorrhagic stroke (n = 5), who had been admitted to the intensive rehabilitation unit (IRU) of the Institute S. Anna (Crotone, Italy), were consecutively enrolled to participate in this study. After the discharge, they continued the motor treatment remotely by means of a home-rehabilitation system. The entire TR intervention was performed (online and offline) using the Virtual Reality Rehabilitation System (VRRS) (Khymeia, Italy). All patients received intensive TR five times a week for 12 consecutive weeks (60 sessions, each session lasting about 1h).Results: We found a significant motor recovery after TR protocol as measured by the Barthel Index (BI); Fugl-Meyer motor score (FM) and Motricity Index (MI) of the hemiplegic upper limbs.Conclusions: This was the first demonstration that a well-defined virtual reality TR tool promotes motor and functional recovery in post-stroke patients living in a low-income Italian region, such as Calabria, characterized by a paucity of specialist rehabilitation services.


Author(s):  
Muhammad Raheel Afzal ◽  
Sanghun Pyo ◽  
Min-Kyun Oh ◽  
Young Sook Park ◽  
Beom-Chan Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document