P System as a Computing Tool for Embedded Feature Selection and Classification Method for Microarray Cancer Data

Author(s):  
Ravie Chandren Muniyandi ◽  
Naeimeh Elkhani
2020 ◽  
Vol 4 (5) ◽  
pp. 805-812
Author(s):  
Riska Chairunisa ◽  
Adiwijaya ◽  
Widi Astuti

Cancer is one of the deadliest diseases in the world with a mortality rate of 57,3% in 2018 in Asia. Therefore, early diagnosis is needed to avoid an increase in mortality caused by cancer. As machine learning develops, cancer gene data can be processed using microarrays for early detection of cancer outbreaks. But the problem that microarray has is the number of attributes that are so numerous that it is necessary to do dimensional reduction. To overcome these problems, this study used dimensions reduction Discrete Wavelet Transform (DWT) with Classification and Regression Tree (CART) and Random Forest (RF) as classification method. The purpose of using these two classification methods is to find out which classification method produces the best performance when combined with the DWT dimension reduction. This research use five microarray data, namely Colon Tumors, Breast Cancer, Lung Cancer, Prostate Tumors and Ovarian Cancer from Kent-Ridge Biomedical Dataset. The best accuracy obtained in this study for breast cancer data were 76,92% with CART-DWT, Colon Tumors 90,1% with RF-DWT, lung cancer 100% with RF-DWT, prostate tumors 95,49% with RF-DWT, and ovarian cancer 100% with RF-DWT. From these results it can be concluded that RF-DWT is better than CART-DWT.  


2021 ◽  
pp. 1063293X2110160
Author(s):  
Dinesh Morkonda Gunasekaran ◽  
Prabha Dhandayudam

Nowadays women are commonly diagnosed with breast cancer. Feature based Selection method plays an important step while constructing a classification based framework. We have proposed Multi filter union (MFU) feature selection method for breast cancer data set. The feature selection process based on random forest algorithm and Logistic regression (LG) algorithm based union model is used for selecting important features in the dataset. The performance of the data analysis is evaluated using optimal features subset from selected dataset. The experiments are computed with data set of Wisconsin diagnostic breast cancer center and next the real data set from women health care center. The result of the proposed approach shows high performance and efficient when comparing with existing feature selection algorithms.


The analization of cancer data and normal data for the predication of somatic mu-tation occurrences in the data set plays an important role and several challenges persist in detectingsomatic mutations which leads to complexity of handling large volumes of data in classifi-cation with good accuracy. In many situations the dataset may consist of redundant and less significant features and there is a need to remove insignificant features in order to improve the performance of classification. Feature selection techniques are useful for dimensionality reduction purpose. PCA is one type of feature selection technique to identify significant attributes and is adopted in this paper. A novel technique, PCA based regression decision tree is proposed for classification of somatic mutations data in this paper.The performance analysis of this clas-sification process for the detection of somatic mutation is compared with existing algorithms and satisfactory results are obtained with the proposed model.


2018 ◽  
Vol 13 (3) ◽  
pp. 323-336 ◽  
Author(s):  
Naeimeh Elkhani ◽  
Ravie Chandren Muniyandi ◽  
Gexiang Zhang

Computational cost is a big challenge for almost all intelligent algorithms which are run on CPU. In this regard, our proposed kernel P system multi-objective binary particle swarm optimization feature selection and classification method should perform with an efficient time that we aimed to settle via using potentials of membrane computing in parallel processing and nondeterminism. Moreover, GPUs perform better with latency-tolerant, highly parallel and independent tasks. In this study, to meet all the potentials of a membrane-inspired model particularly parallelism and to improve the time cost, feature selection method implemented on GPU. The time cost of the proposed method on CPU, GPU and Multicore indicates a significant improvement via implementing method on GPU.


Information ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 187
Author(s):  
Rattanawadee Panthong ◽  
Anongnart Srivihok

Liver cancer data always consist of a large number of multidimensional datasets. A dataset that has huge features and multiple classes may be irrelevant to the pattern classification in machine learning. Hence, feature selection improves the performance of the classification model to achieve maximum classification accuracy. The aims of the present study were to find the best feature subset and to evaluate the classification performance of the predictive model. This paper proposed a hybrid feature selection approach by combining information gain and sequential forward selection based on the class-dependent technique (IGSFS-CD) for the liver cancer classification model. Two different classifiers (decision tree and naïve Bayes) were used to evaluate feature subsets. The liver cancer datasets were obtained from the Cancer Hospital Thailand database. Three ensemble methods (ensemble classifiers, bagging, and AdaBoost) were applied to improve the performance of classification. The IGSFS-CD method provided good accuracy of 78.36% (sensitivity 0.7841 and specificity 0.9159) on LC_dataset-1. In addition, LC_dataset II delivered the best performance with an accuracy of 84.82% (sensitivity 0.8481 and specificity 0.9437). The IGSFS-CD method achieved better classification performance compared to the class-independent method. Furthermore, the best feature subset selection could help reduce the complexity of the predictive model.


ETRI Journal ◽  
2019 ◽  
Vol 41 (3) ◽  
pp. 358-370 ◽  
Author(s):  
Dilwar Hussain Mazumder ◽  
Ramachandran Veilumuthu

Sign in / Sign up

Export Citation Format

Share Document