Mining Neighbor Frames for Person Re-identification by Global Optimal Tracking

Author(s):  
Kai Han ◽  
Jinho Lee ◽  
Lang Huang ◽  
Fangcheng Liu ◽  
Seiichi Uchida ◽  
...  
Author(s):  
Chung-Ching Lin ◽  
Franco Stellari ◽  
Lynne Gignac ◽  
Peilin Song ◽  
John Bruley

Abstract Transmission Electron Microscopy (TEM) and scanning TEM (STEM) is widely used to acquire ultra high resolution images in different research areas. For some applications, a single TEM/STEM image does not provide enough information for analysis. One example in VLSI circuit failure analysis is the tracking of long interconnection. The capability of creating a large map of high resolution images may enable significant progress in some tasks. However, stitching TEM/STEM images in semiconductor applications is difficult and existing tools are unable to provide usable stitching results for analysis. In this paper, a novel fully automated method for stitching TEM/STEM image mosaics is proposed. The proposed method allows one to reach a global optimal configuration of each image tile so that both missing and false-positive correspondences can be tolerated. The experiment results presented in this paper show that the proposed method is robust and performs well in very challenging situations.


2019 ◽  
Vol 19 (2) ◽  
pp. 139-145 ◽  
Author(s):  
Bote Lv ◽  
Juan Chen ◽  
Boyan Liu ◽  
Cuiying Dong

<P>Introduction: It is well-known that the biogeography-based optimization (BBO) algorithm lacks searching power in some circumstances. </P><P> Material & Methods: In order to address this issue, an adaptive opposition-based biogeography-based optimization algorithm (AO-BBO) is proposed. Based on the BBO algorithm and opposite learning strategy, this algorithm chooses different opposite learning probabilities for each individual according to the habitat suitability index (HSI), so as to avoid elite individuals from returning to local optimal solution. Meanwhile, the proposed method is tested in 9 benchmark functions respectively. </P><P> Result: The results show that the improved AO-BBO algorithm can improve the population diversity better and enhance the search ability of the global optimal solution. The global exploration capability, convergence rate and convergence accuracy have been significantly improved. Eventually, the algorithm is applied to the parameter optimization of soft-sensing model in plant medicine extraction rate. Conclusion: The simulation results show that the model obtained by this method has higher prediction accuracy and generalization ability.</P>


2021 ◽  
Vol 11 (3) ◽  
pp. 1211
Author(s):  
En-Chih Chang ◽  
Chun-An Cheng ◽  
Rong-Ching Wu

This paper develops a full-bridge DC-AC converter, which uses a robust optimal tracking control strategy to procure a high-quality sine output waveshape even in the presence of unpredictable intermissions. The proposed strategy brings out the advantages of non-singular fast convergent terminal attractor (NFCTA) and chaos particle swarm optimization (CPSO). Compared with a typical TA, the NFCTA affords fast convergence within a limited time to the steady-state situation, and keeps away from the possibility of singularity through its sliding surface design. It is worth noting that once the NFCTA-controlled DC-AC converter encounters drastic changes in internal parameters or the influence of external non-linear loads, the trembling with low-control precision will occur and the aggravation of transient and steady-state performance yields. Although the traditional PSO algorithm has the characteristics of simple implementation and fast convergence, the search process lacks diversity and converges prematurely. So, it is impossible to deviate from the local extreme value, resulting in poor solution quality or search stagnation. Thereby, an improved version of traditional PSO called CPSO is used to discover global optimal NFCTA parameters, which can preclude precocious convergence to local solutions, mitigating the tremor as well as enhancing DC-AC converter performance. By using the proposed stable closed-loop full-bridge DC-AC converter with a hybrid strategy integrating NFCTA and CPSO, low total harmonic distortion (THD) output-voltage and fast dynamic load response are generated under nonlinear rectifier-type load situations and during sudden load changes, respectively. Simulation results are done by the Matlab/Simulink environment, and experimental results of a digital signal processor (DSP) controlled full-bridge DC-AC converter prototype confirm the usefulness of the proposed strategy.


Author(s):  
Ferdinand Bollwein ◽  
Stephan Westphal

AbstractUnivariate decision tree induction methods for multiclass classification problems such as CART, C4.5 and ID3 continue to be very popular in the context of machine learning due to their major benefit of being easy to interpret. However, as these trees only consider a single attribute per node, they often get quite large which lowers their explanatory value. Oblique decision tree building algorithms, which divide the feature space by multidimensional hyperplanes, often produce much smaller trees but the individual splits are hard to interpret. Moreover, the effort of finding optimal oblique splits is very high such that heuristics have to be applied to determine local optimal solutions. In this work, we introduce an effective branch and bound procedure to determine global optimal bivariate oblique splits for concave impurity measures. Decision trees based on these bivariate oblique splits remain fairly interpretable due to the restriction to two attributes per split. The resulting trees are significantly smaller and more accurate than their univariate counterparts due to their ability of adapting better to the underlying data and capturing interactions of attribute pairs. Moreover, our evaluation shows that our algorithm even outperforms algorithms based on heuristically obtained multivariate oblique splits despite the fact that we are focusing on two attributes only.


Sign in / Sign up

Export Citation Format

Share Document