2021 ◽  
Vol 75 (3) ◽  
pp. 83-93
Author(s):  
Zh. A. Buribayev ◽  
◽  
Zh. E. Amirgaliyeva ◽  
A.S. Ataniyazova ◽  
Z. M. Melis ◽  
...  

The article considers the relevance of the introduction of intelligent weed detection systems, in order to save herbicides and pesticides, as well as to obtain environmentally friendly products. A brief review of the researchers' scientific works is carried out, which describes the methods of identification, classification and discrimination of weeds developed by them based on machine learning algorithms, convolutional neural networks and deep learning algorithms. This research paper presents a program for detecting pests of agricultural land using the algorithms K-Nearest Neighbors, Random Forest and Decision Tree. The data set is collected from 4 types of weeds, such as amaranthus, ambrosia, bindweed and bromus. According to the results of the assessment, the accuracy of weed detection by the classifiers K-Nearest Neighbors, Random Forest and Decision Tree was 83.3%, 87.5%, and 80%. Quantitative results obtained on real data demonstrate that the proposed approach can provide good results in classifying low-resolution images of weeds.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8764 ◽  
Author(s):  
Siroj Bakoev ◽  
Lyubov Getmantseva ◽  
Maria Kolosova ◽  
Olga Kostyunina ◽  
Duane R. Chartier ◽  
...  

Industrial pig farming is associated with negative technological pressure on the bodies of pigs. Leg weakness and lameness are the sources of significant economic loss in raising pigs. Therefore, it is important to identify the predictors of limb condition. This work presents assessments of the state of limbs using indicators of growth and meat characteristics of pigs based on machine learning algorithms. We have evaluated and compared the accuracy of prediction for nine ML classification algorithms (Random Forest, K-Nearest Neighbors, Artificial Neural Networks, C50Tree, Support Vector Machines, Naive Bayes, Generalized Linear Models, Boost, and Linear Discriminant Analysis) and have identified the Random Forest and K-Nearest Neighbors as the best-performing algorithms for predicting pig leg weakness using a small set of simple measurements that can be taken at an early stage of animal development. Measurements of Muscle Thickness, Back Fat amount, and Average Daily Gain were found to be significant predictors of the conformation of pig limbs. Our work demonstrates the utility and relative ease of using machine learning algorithms to assess the state of limbs in pigs based on growth rate and meat characteristics.


Author(s):  
Baydaulet Urmashev ◽  
Zholdas Buribayev ◽  
Zhazira Amirgaliyeva ◽  
Aisulu Ataniyazova ◽  
Mukhtar Zhassuzak ◽  
...  

The detection of weeds at the stages of cultivation is very important for detecting and preventing plant diseases and eliminating significant crop losses, and traditional methods of performing this process require large costs and human resources, in addition to exposing workers to the risk of contamination with harmful chemicals. To solve the above tasks, also in order to save herbicides and pesticides, to obtain environmentally friendly products, a program for detecting agricultural pests using the classical K-Nearest Neighbors, Random Forest and Decision Tree algorithms, as well as YOLOv5 neural network, is proposed. After analyzing the geographical areas of the country, from the images of the collected weeds, a proprietary database with more than 1000 images for each class was formed. A brief review of the researchers' scientific papers describing the methods they developed for identifying, classifying and discriminating weeds based on machine learning algorithms, convolutional neural networks and deep learning algorithms is given. As a result of the research, a weed detection system based on the YOLOv5 architecture was developed and quality estimates of the above algorithms were obtained. According to the results of the assessment, the accuracy of weed detection by the K-Nearest Neighbors, Random Forest and Decision Tree classifiers was 83.3 %, 87.5 %, and 80 %. Due to the fact that the images of weeds of each species differ in resolution and level of illumination, the results of the neural network have corresponding indicators in the intervals of 0.82–0.92 for each class. Quantitative results obtained on real data demonstrate that the proposed approach can provide good results in classifying low-resolution images of weeds.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Matthijs Blankers ◽  
Louk F. M. van der Post ◽  
Jack J. M. Dekker

Abstract Background Accurate prediction models for whether patients on the verge of a psychiatric criseis need hospitalization are lacking and machine learning methods may help improve the accuracy of psychiatric hospitalization prediction models. In this paper we evaluate the accuracy of ten machine learning algorithms, including the generalized linear model (GLM/logistic regression) to predict psychiatric hospitalization in the first 12 months after a psychiatric crisis care contact. We also evaluate an ensemble model to optimize the accuracy and we explore individual predictors of hospitalization. Methods Data from 2084 patients included in the longitudinal Amsterdam Study of Acute Psychiatry with at least one reported psychiatric crisis care contact were included. Target variable for the prediction models was whether the patient was hospitalized in the 12 months following inclusion. The predictive power of 39 variables related to patients’ socio-demographics, clinical characteristics and previous mental health care contacts was evaluated. The accuracy and area under the receiver operating characteristic curve (AUC) of the machine learning algorithms were compared and we also estimated the relative importance of each predictor variable. The best and least performing algorithms were compared with GLM/logistic regression using net reclassification improvement analysis and the five best performing algorithms were combined in an ensemble model using stacking. Results All models performed above chance level. We found Gradient Boosting to be the best performing algorithm (AUC = 0.774) and K-Nearest Neighbors to be the least performing (AUC = 0.702). The performance of GLM/logistic regression (AUC = 0.76) was slightly above average among the tested algorithms. In a Net Reclassification Improvement analysis Gradient Boosting outperformed GLM/logistic regression by 2.9% and K-Nearest Neighbors by 11.3%. GLM/logistic regression outperformed K-Nearest Neighbors by 8.7%. Nine of the top-10 most important predictor variables were related to previous mental health care use. Conclusions Gradient Boosting led to the highest predictive accuracy and AUC while GLM/logistic regression performed average among the tested algorithms. Although statistically significant, the magnitude of the differences between the machine learning algorithms was in most cases modest. The results show that a predictive accuracy similar to the best performing model can be achieved when combining multiple algorithms in an ensemble model.


2019 ◽  
Author(s):  
Matthijs Blankers ◽  
Louk F. M. van der Post ◽  
Jack J. M. Dekker

Abstract Background: It is difficult to accurately predict whether a patient on the verge of a potential psychiatric crisis will need to be hospitalized. Machine learning may be helpful to improve the accuracy of psychiatric hospitalization prediction models. In this paper we evaluate and compare the accuracy of ten machine learning algorithms including the commonly used generalized linear model (GLM/logistic regression) to predict psychiatric hospitalization in the first 12 months after a psychiatric crisis care contact, and explore the most important predictor variables of hospitalization. Methods: Data from 2,084 patients with at least one reported psychiatric crisis care contact included in the longitudinal Amsterdam Study of Acute Psychiatry were used. The accuracy and area under the receiver operating characteristic curve (AUC) of the machine learning algorithms were compared. We also estimated the relative importance of each predictor variable. The best and least performing algorithms were compared with GLM/logistic regression using net reclassification improvement analysis. Target variable for the prediction models was whether or not the patient was hospitalized in the 12 months following inclusion in the study. The 39 predictor variables were related to patients’ socio-demographics, clinical characteristics and previous mental health care contacts. Results: We found Gradient Boosting to perform the best (AUC=0.774) and K-Nearest Neighbors performing the least (AUC=0.702). The performance of GLM/logistic regression (AUC=0.76) was above average among the tested algorithms. Gradient Boosting outperformed GLM/logistic regression and K-Nearest Neighbors, and GLM outperformed K-Nearest Neighbors in a Net Reclassification Improvement analysis, although the differences between Gradient Boosting and GLM/logistic regression were small. Nine of the top-10 most important predictor variables were related to previous mental health care use. Conclusions: Gradient Boosting led to the highest predictive accuracy and AUC while GLM/logistic regression performed average among the tested algorithms. Although statistically significant, the magnitude of the differences between the machine learning algorithms was modest. Future studies may consider to combine multiple algorithms in an ensemble model for optimal performance and to mitigate the risk of choosing suboptimal performing algorithms.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1677
Author(s):  
Ersin Elbasi ◽  
Ahmet E. Topcu ◽  
Shinu Mathew

COVID-19 is a community-acquired infection with symptoms that resemble those of influenza and bacterial pneumonia. Creating an infection control policy involving isolation, disinfection of surfaces, and identification of contagions is crucial in eradicating such pandemics. Incorporating social distancing could also help stop the spread of community-acquired infections like COVID-19. Social distancing entails maintaining certain distances between people and reducing the frequency of contact between people. Meanwhile, a significant increase in the development of different Internet of Things (IoT) devices has been seen together with cyber-physical systems that connect with physical environments. Machine learning is strengthening current technologies by adding new approaches to quickly and correctly solve problems utilizing this surge of available IoT devices. We propose a new approach using machine learning algorithms for monitoring the risk of COVID-19 in public areas. Extracted features from IoT sensors are used as input for several machine learning algorithms such as decision tree, neural network, naïve Bayes classifier, support vector machine, and random forest to predict the risks of the COVID-19 pandemic and calculate the risk probability of public places. This research aims to find vulnerable populations and reduce the impact of the disease on certain groups using machine learning models. We build a model to calculate and predict the risk factors of populated areas. This model generates automated alerts for security authorities in the case of any abnormal detection. Experimental results show that we have high accuracy with random forest of 97.32%, with decision tree of 94.50%, and with the naïve Bayes classifier of 99.37%. These algorithms indicate great potential for crowd risk prediction in public areas.


Author(s):  
Jiarui Yin ◽  
Inikuro Afa Michael ◽  
Iduabo John Afa

Machine learning plays a key role in present day crime detection, analysis and prediction. The goal of this work is to propose methods for predicting crimes classified into different categories of severity. We implemented visualization and analysis of crime data statistics in recent years in the city of Boston. We then carried out a comparative study between two supervised learning algorithms, which are decision tree and random forest based on the accuracy and processing time of the models to make predictions using geographical and temporal information provided by splitting the data into training and test sets. The result shows that random forest as expected gives a better result by 1.54% more accuracy in comparison to decision tree, although this comes at a cost of at least 4.37 times the time consumed in processing. The study opens doors to application of similar supervised methods in crime data analytics and other fields of data science


2019 ◽  
Vol 9 (14) ◽  
pp. 2789 ◽  
Author(s):  
Sadaf Malik ◽  
Nadia Kanwal ◽  
Mamoona Naveed Asghar ◽  
Mohammad Ali A. Sadiq ◽  
Irfan Karamat ◽  
...  

Medical health systems have been concentrating on artificial intelligence techniques for speedy diagnosis. However, the recording of health data in a standard form still requires attention so that machine learning can be more accurate and reliable by considering multiple features. The aim of this study is to develop a general framework for recording diagnostic data in an international standard format to facilitate prediction of disease diagnosis based on symptoms using machine learning algorithms. Efforts were made to ensure error-free data entry by developing a user-friendly interface. Furthermore, multiple machine learning algorithms including Decision Tree, Random Forest, Naive Bayes and Neural Network algorithms were used to analyze patient data based on multiple features, including age, illness history and clinical observations. This data was formatted according to structured hierarchies designed by medical experts, whereas diagnosis was made as per the ICD-10 coding developed by the American Academy of Ophthalmology. Furthermore, the system is designed to evolve through self-learning by adding new classifications for both diagnosis and symptoms. The classification results from tree-based methods demonstrated that the proposed framework performs satisfactorily, given a sufficient amount of data. Owing to a structured data arrangement, the random forest and decision tree algorithms’ prediction rate is more than 90% as compared to more complex methods such as neural networks and the naïve Bayes algorithm.


2021 ◽  
Vol 5 (1) ◽  
pp. 35
Author(s):  
Uttam Narendra Thakur ◽  
Radha Bhardwaj ◽  
Arnab Hazra

Disease diagnosis through breath analysis has attracted significant attention in recent years due to its noninvasive nature, rapid testing ability, and applicability for patients of all ages. More than 1000 volatile organic components (VOCs) exist in human breath, but only selected VOCs are associated with specific diseases. Selective identification of those disease marker VOCs using an array of multiple sensors are highly desirable in the current scenario. The use of efficient sensors and the use of suitable classification algorithms is essential for the selective and reliable detection of those disease markers in complex breath. In the current study, we fabricated a noble metal (Au, Pd and Pt) nanoparticle-functionalized MoS2 (Chalcogenides, Sigma Aldrich, St. Louis, MO, USA)-based sensor array for the selective identification of different VOCs. Four sensors, i.e., pure MoS2, Au/MoS2, Pd/MoS2, and Pt/MoS2 were tested under exposure to different VOCs, such as acetone, benzene, ethanol, xylene, 2-propenol, methanol and toluene, at 50 °C. Initially, principal component analysis (PCA) and linear discriminant analysis (LDA) were used to discriminate those seven VOCs. As compared to the PCA, LDA was able to discriminate well between the seven VOCs. Four different machine learning algorithms such as k-nearest neighbors (kNN), decision tree, random forest, and multinomial logistic regression were used to further identify those VOCs. The classification accuracy of those seven VOCs using KNN, decision tree, random forest, and multinomial logistic regression was 97.14%, 92.43%, 84.1%, and 98.97%, respectively. These results authenticated that multinomial logistic regression performed best between the four machine learning algorithms to discriminate and differentiate the multiple VOCs that generally exist in human breath.


Sign in / Sign up

Export Citation Format

Share Document