scholarly journals Development of a weed detection system using machine learning and neural network algorithms

Author(s):  
Baydaulet Urmashev ◽  
Zholdas Buribayev ◽  
Zhazira Amirgaliyeva ◽  
Aisulu Ataniyazova ◽  
Mukhtar Zhassuzak ◽  
...  

The detection of weeds at the stages of cultivation is very important for detecting and preventing plant diseases and eliminating significant crop losses, and traditional methods of performing this process require large costs and human resources, in addition to exposing workers to the risk of contamination with harmful chemicals. To solve the above tasks, also in order to save herbicides and pesticides, to obtain environmentally friendly products, a program for detecting agricultural pests using the classical K-Nearest Neighbors, Random Forest and Decision Tree algorithms, as well as YOLOv5 neural network, is proposed. After analyzing the geographical areas of the country, from the images of the collected weeds, a proprietary database with more than 1000 images for each class was formed. A brief review of the researchers' scientific papers describing the methods they developed for identifying, classifying and discriminating weeds based on machine learning algorithms, convolutional neural networks and deep learning algorithms is given. As a result of the research, a weed detection system based on the YOLOv5 architecture was developed and quality estimates of the above algorithms were obtained. According to the results of the assessment, the accuracy of weed detection by the K-Nearest Neighbors, Random Forest and Decision Tree classifiers was 83.3 %, 87.5 %, and 80 %. Due to the fact that the images of weeds of each species differ in resolution and level of illumination, the results of the neural network have corresponding indicators in the intervals of 0.82–0.92 for each class. Quantitative results obtained on real data demonstrate that the proposed approach can provide good results in classifying low-resolution images of weeds.

2021 ◽  
Vol 75 (3) ◽  
pp. 83-93
Author(s):  
Zh. A. Buribayev ◽  
◽  
Zh. E. Amirgaliyeva ◽  
A.S. Ataniyazova ◽  
Z. M. Melis ◽  
...  

The article considers the relevance of the introduction of intelligent weed detection systems, in order to save herbicides and pesticides, as well as to obtain environmentally friendly products. A brief review of the researchers' scientific works is carried out, which describes the methods of identification, classification and discrimination of weeds developed by them based on machine learning algorithms, convolutional neural networks and deep learning algorithms. This research paper presents a program for detecting pests of agricultural land using the algorithms K-Nearest Neighbors, Random Forest and Decision Tree. The data set is collected from 4 types of weeds, such as amaranthus, ambrosia, bindweed and bromus. According to the results of the assessment, the accuracy of weed detection by the classifiers K-Nearest Neighbors, Random Forest and Decision Tree was 83.3%, 87.5%, and 80%. Quantitative results obtained on real data demonstrate that the proposed approach can provide good results in classifying low-resolution images of weeds.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8764 ◽  
Author(s):  
Siroj Bakoev ◽  
Lyubov Getmantseva ◽  
Maria Kolosova ◽  
Olga Kostyunina ◽  
Duane R. Chartier ◽  
...  

Industrial pig farming is associated with negative technological pressure on the bodies of pigs. Leg weakness and lameness are the sources of significant economic loss in raising pigs. Therefore, it is important to identify the predictors of limb condition. This work presents assessments of the state of limbs using indicators of growth and meat characteristics of pigs based on machine learning algorithms. We have evaluated and compared the accuracy of prediction for nine ML classification algorithms (Random Forest, K-Nearest Neighbors, Artificial Neural Networks, C50Tree, Support Vector Machines, Naive Bayes, Generalized Linear Models, Boost, and Linear Discriminant Analysis) and have identified the Random Forest and K-Nearest Neighbors as the best-performing algorithms for predicting pig leg weakness using a small set of simple measurements that can be taken at an early stage of animal development. Measurements of Muscle Thickness, Back Fat amount, and Average Daily Gain were found to be significant predictors of the conformation of pig limbs. Our work demonstrates the utility and relative ease of using machine learning algorithms to assess the state of limbs in pigs based on growth rate and meat characteristics.


2021 ◽  
Vol 1 (2) ◽  
pp. 106-118
Author(s):  
Bahzad Taha Chicho ◽  
Adnan Mohsin Abdulazeez ◽  
Diyar Qader Zeebaree ◽  
Dilovan Assad Zebari

Classification is the most widely applied machine learning problem today, with implementations in face recognition, flower classification, clustering, and other fields. The goal of this paper is to organize and identify a set of data objects. The study employs K-nearest neighbors, decision tree (j48), and random forest algorithms, and then compares their performance using the IRIS dataset. The results of the comparison analysis showed that the K-nearest neighbors outperformed the other classifiers. Also, the random forest classifier worked better than the decision tree (j48). Finally, the best result obtained by this study is 100% and there is no error rate for the classifier that was obtained.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Luana Ibiapina Cordeiro Calíope Pinheiro ◽  
Maria Lúcia Duarte Pereira ◽  
Marcial Porto Fernandez ◽  
Francisco Mardônio Vieira Filho ◽  
Wilson Jorge Correia Pinto de Abreu ◽  
...  

Dementia interferes with the individual’s motor, behavioural, and intellectual functions, causing him to be unable to perform instrumental activities of daily living. This study is aimed at identifying the best performing algorithm and the most relevant characteristics to categorise individuals with HIV/AIDS at high risk of dementia from the application of data mining. Principal component analysis (PCA) algorithm was used and tested comparatively between the following machine learning algorithms: logistic regression, decision tree, neural network, KNN, and random forest. The database used for this study was built from the data collection of 270 individuals infected with HIV/AIDS and followed up at the outpatient clinic of a reference hospital for infectious and parasitic diseases in the State of Ceará, Brazil, from January to April 2019. Also, the performance of the algorithms was analysed for the 104 characteristics available in the database; then, with the reduction of dimensionality, there was an improvement in the quality of the machine learning algorithms and identified that during the tests, even losing about 30% of the variation. Besides, when considering only 23 characteristics, the precision of the algorithms was 86% in random forest, 56% logistic regression, 68% decision tree, 60% KNN, and 59% neural network. The random forest algorithm proved to be more effective than the others, obtaining 84% precision and 86% accuracy.


2018 ◽  
Author(s):  
Wylken S. Machado ◽  
Pedro H. Barros ◽  
Eliana S. Almeida ◽  
Andre L. L. Aquino

Neste trabalho apresentamos a avaliação do desempenho de algoritmos de machine learning para identificar Atividades de Vida Diária (ADLs) e quedas. Nós avaliamos os seguintes algoritmos: K-Nearest Neighbors, Naive Bayes, Support Vector Machine, Decision Tree, Random Forest, Extra-Trees e Redes Neurais Recorrentes. Utilizamos um conjunto de dados coletados por uma Body Sensor Networks com cinco dispositivos sensores conectados através da interface Bluetooth Low Energy, chamado UMAFall. Obtivemos resultados satisfatórios, principalmente para as atividades saltar e queda frontal, com 100 % de acurácia, utilizando o algoritmo Extra-Trees.


2021 ◽  
Vol 2076 (1) ◽  
pp. 012045
Author(s):  
Aimin Li ◽  
Meng Fan ◽  
Guangduo Qin

Abstract There are many traditional methods available for water body extraction based on remote sensing images, such as normalised difference water index (NDWI), modified NDWI (MNDWI), and the multi-band spectrum method, but the accuracy of these methods is limited. In recent years, machine learning algorithms have developed rapidly and been applied widely. Using Landsat-8 images, models such as decision tree, logistic regression, a random forest, neural network, support vector method (SVM), and Xgboost were adopted in the present research within machine learning algorithms. Based on this, through cross validation and a grid search method, parameters were determined for each model.Moreover, the merits and demerits of several models in water body extraction were discussed and a comparative analysis was performed with three methods for determining thresholds in the traditional NDWI. The results show that the neural network has excellent performances and is a stable model, followed by the SVM and the logistic regression algorithm. Furthermore, the ensemble algorithms including the random forest and Xgboost were affected by sample distribution and the model of the decision tree returned the poorest performance.


Author(s):  
G.Bhargav Chowdari

One of the most serious ethical challenges in the credit card industry is fraud. Our paper’s major goal is to identify credit card theft and offer a reasonable solution to the problem. Credit card fraud has cost customers and banks billions of dollars around the world. Fraudsters are constantly attempting to come up with new ways and tricks to commit fraud, despite the fact that there are several measures in place to prevent it. Fraud detection is extremely important in the banking and finance industries. For detection purposes, we will use an artificial neural network. As a result, in order to prevent it, we will develop a system that will not only detect fraud, but will also detect it before it occurs. In order to detect new scams, our system will learn from previous frauds. Mining algorithms were used to detect fraud, but they failed miserably. We use machine learning methods to detect fraud in credit card transactions in our paper. The research employs supervised learning methods that are applied to a kaggle dataset that is severely skewed and imbalanced. We used robust scalar to balance the set, resulting in 51 percent non-fraud cases and 49 percent fraud ones. Logistic regression, random forest, decision tree, and KNN have all been implemented, with additional learning curves displaying which algorithm performs best. Accuracy, specificity, precision, and sensitivity are the evaluation criteria, and a comparative chart is created to show the comparative analysis of various supervised learning algorithms. KEYWORDS: KNN,Neural network,Logistic regression,Random forest,Decision tree


2021 ◽  
Author(s):  
João Paulo A. Andrade ◽  
Leonardo S. Paulucio ◽  
Thiago M. Paixão ◽  
Rodrigo F. Berriel ◽  
Teresa Cristina Janes Carneiro ◽  
...  

Companies created for money-laundering or as a means for taxevasion are harmful to the country's economy and society. This problem is usually tackled by governmental agencies by having officials to pore over companies' financial data and to single out those that exhibit fraudulent behavior. Such work tends to be slow-paced and tedious. This paper proposes a machine learning-based system capable of classifying whether a company is likely to be involved in fraud or not. Based on financial and tax data from various companies, four different classifiers – k-Nearest Neighbors, Random Forest, Support Vector Machine (SVM), and a Neural Network – were trained and then used to indicate fraud. The best-performing model achieved a macro-averaged F1-score of 92.98% with the Random Forest.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Matthijs Blankers ◽  
Louk F. M. van der Post ◽  
Jack J. M. Dekker

Abstract Background Accurate prediction models for whether patients on the verge of a psychiatric criseis need hospitalization are lacking and machine learning methods may help improve the accuracy of psychiatric hospitalization prediction models. In this paper we evaluate the accuracy of ten machine learning algorithms, including the generalized linear model (GLM/logistic regression) to predict psychiatric hospitalization in the first 12 months after a psychiatric crisis care contact. We also evaluate an ensemble model to optimize the accuracy and we explore individual predictors of hospitalization. Methods Data from 2084 patients included in the longitudinal Amsterdam Study of Acute Psychiatry with at least one reported psychiatric crisis care contact were included. Target variable for the prediction models was whether the patient was hospitalized in the 12 months following inclusion. The predictive power of 39 variables related to patients’ socio-demographics, clinical characteristics and previous mental health care contacts was evaluated. The accuracy and area under the receiver operating characteristic curve (AUC) of the machine learning algorithms were compared and we also estimated the relative importance of each predictor variable. The best and least performing algorithms were compared with GLM/logistic regression using net reclassification improvement analysis and the five best performing algorithms were combined in an ensemble model using stacking. Results All models performed above chance level. We found Gradient Boosting to be the best performing algorithm (AUC = 0.774) and K-Nearest Neighbors to be the least performing (AUC = 0.702). The performance of GLM/logistic regression (AUC = 0.76) was slightly above average among the tested algorithms. In a Net Reclassification Improvement analysis Gradient Boosting outperformed GLM/logistic regression by 2.9% and K-Nearest Neighbors by 11.3%. GLM/logistic regression outperformed K-Nearest Neighbors by 8.7%. Nine of the top-10 most important predictor variables were related to previous mental health care use. Conclusions Gradient Boosting led to the highest predictive accuracy and AUC while GLM/logistic regression performed average among the tested algorithms. Although statistically significant, the magnitude of the differences between the machine learning algorithms was in most cases modest. The results show that a predictive accuracy similar to the best performing model can be achieved when combining multiple algorithms in an ensemble model.


Sign in / Sign up

Export Citation Format

Share Document