An Efficient Data Transmission Strategy for Edge-Computing-Based Opportunistic Social Networks

Author(s):  
Jingwen Luo ◽  
Jia Wu ◽  
Yuzhou Wu
IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 22144-22160 ◽  
Author(s):  
Yeqing Yan ◽  
Zhigang Chen ◽  
Jia Wu ◽  
Leilei Wang ◽  
Kanghuai Liu ◽  
...  

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Prabhjot Kaur ◽  
Hardeep Singh Saini

AbstractFiber wireless (Fi-Wi) communication network is the amalgamation of optical and wireless access networks, which provides better bandwidth for achieving efficient data transmission. Medium access control (MAC) protocols are used in the wireless network for controlling the data flow from the transmitter to the receiver end. The delay produced by these protocols tells about the system efficiency. This paper shows a Fi-Wi system in the long-term evaluation-advanced (LTE-A) environment, which incorporates the dependency of delay generated by the specific MAC protocols during the transmission process. This paper aimed to scrutinize the effects of Carrier Sense Multiplexing Access with Collision Detection (CSMA/CD), Carrier Sense Multiplexing Access with Collision Avoidance (CSMA/CA) and Slotted ALOHA on the performance of the Fi-Wi system. Free space optical (FSO) channel is incorporated to forward the data to user end. In such system, the optical signal is multiplexed using the Orthogonal Frequency Division Multiplexing (OFDM) technique and finally the data are fetched at the receiver end and different criterions such eye-height, Q-factor and bit error rate are evaluated. Simulation results are performed using MATLAB software. The comparative analysis is also performed in terms of data transmission efficiency, delay and throughput of MAC protocols. This shows the effective results of the proposed system according to the delay produced by MAC protocols.


Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1138
Author(s):  
Yu Lu ◽  
Liu Chang ◽  
Jingwen Luo ◽  
Jia Wu

With the rapid popularization of 5G communication and internet of things technologies, the amount of information has increased significantly in opportunistic social networks, and the types of messages have become more and more complex. More and more mobile devices join the network as nodes, making the network scale increase sharply, and the tremendous amount of datatransmission brings a more significant burden to the network. Traditional opportunistic social network routing algorithms lack effective message copy management and relay node selection methods, which will cause problems such as high network delay and insufficient cache space. Thus, we propose an opportunistic social network routing algorithm based on user-adaptive data transmission. The algorithm will combine the similarity factor, communication factor, and transmission factor of the nodes in the opportunistic social network and use information entropy theory to adaptively assign the weights of decision feature attributes in response to network changes. Also, edge nodes are effectively used, and the nodes are divided into multiple communities to reconstruct the community structure. The simulation results show that the algorithm demonstrates good performance in improving the information transmission’s success rate, reducing network delay, and caching overhead.


Sign in / Sign up

Export Citation Format

Share Document