FSO-Based Analysis of LTE-A MAC Protocols to Achieve Improved QoS

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Prabhjot Kaur ◽  
Hardeep Singh Saini

AbstractFiber wireless (Fi-Wi) communication network is the amalgamation of optical and wireless access networks, which provides better bandwidth for achieving efficient data transmission. Medium access control (MAC) protocols are used in the wireless network for controlling the data flow from the transmitter to the receiver end. The delay produced by these protocols tells about the system efficiency. This paper shows a Fi-Wi system in the long-term evaluation-advanced (LTE-A) environment, which incorporates the dependency of delay generated by the specific MAC protocols during the transmission process. This paper aimed to scrutinize the effects of Carrier Sense Multiplexing Access with Collision Detection (CSMA/CD), Carrier Sense Multiplexing Access with Collision Avoidance (CSMA/CA) and Slotted ALOHA on the performance of the Fi-Wi system. Free space optical (FSO) channel is incorporated to forward the data to user end. In such system, the optical signal is multiplexed using the Orthogonal Frequency Division Multiplexing (OFDM) technique and finally the data are fetched at the receiver end and different criterions such eye-height, Q-factor and bit error rate are evaluated. Simulation results are performed using MATLAB software. The comparative analysis is also performed in terms of data transmission efficiency, delay and throughput of MAC protocols. This shows the effective results of the proposed system according to the delay produced by MAC protocols.

Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3895 ◽  
Author(s):  
Yuan Dong ◽  
Lina Pu ◽  
Yu Luo ◽  
Zheng Peng ◽  
Haining Mo ◽  
...  

In underwater sensor networks (UWSNs), the unique characteristics of acoustic channels have posed great challenges for the design of medium access control (MAC) protocols. The long propagation delay problem has been widely explored in recent literature. However, the long preamble problem with acoustic modems revealed in real experiments brings new challenges to underwater MAC design. The overhead of control messages in handshaking-based protocols becomes significant due to the long preamble in underwater acoustic modems. To address this problem, we advocate the receiver-initiated handshaking method with parallel reservation to improve the handshaking efficiency. Despite some existing works along this direction, the data polling problem is still an open issue. Without knowing the status of senders, the receiver faces two challenges for efficient data polling: when to poll data from the sender and how much data to request. In this paper, we propose a traffic estimation-based receiver-initiated MAC (TERI-MAC) to solve this problem with an adaptive approach. Data polling in TERI-MAC depends on an online approximation of traffic distribution. It estimates the energy efficiency and network latency and starts the data request only when the preferred performance can be achieved. TERI-MAC can achieve a stable energy efficiency with arbitrary network traffic patterns. For traffic estimation, we employ a resampling technique to keep a small computation and memory overhead. The performance of TERI-MAC in terms of energy efficiency, channel utilization, and communication latency is verified in simulations. Our results show that, compared with existing receiver-initiated-based underwater MAC protocols, TERI-MAC can achieve higher energy efficiency at the price of a delay penalty. This confirms the strength of TERI-MAC for delay-tolerant applications.


2018 ◽  
Vol 7 (4) ◽  
pp. 2822 ◽  
Author(s):  
Abdelhalim Zekry ◽  
Christena Ghandour ◽  
Nazmi A. Mohammed ◽  
S El-Rabaie

This work enhances the bit rate characteristics, receiver sensitivity and power requirements of multicarrier modulation schemes (MCM) for visible light communication (VLC) dimming control system at bit error rate (BER) less than 10-3. This study develops the mathematical formulation for merging pulse position modulation (PPM) and overlapping pulse position modulation (OPPM) with M-ary quadrature amplitude modulation DC-Biased optical orthogonal frequency division multiplexing (M-QAM DCO OFDM), which can achieve efficient data transmission while maintaining communication quality. These schemes are then compared with the conventional merging (i.e M-QAM DCO OFDM with pulse width modulation (PWM)). Relating to the recent advances in the field, the additional comparative study is established with the latest merging platform (i.e. M-QAM DCO OFDM with multiple pulse position modulation (MPPM)). 


2017 ◽  
Vol 39 (1) ◽  
Author(s):  
Florence Rashidi ◽  
Jing He ◽  
Lin Chen

AbstractThe challenge in the free-space optical (FSO) communication is the propagation of optical signal through different atmospheric conditions such as rain, snow and fog. In this paper, an orthogonal frequency-division multiplexing technique (OFDM) is proposed in the FSO communication system. Meanwhile, considering the rain attenuation models based on Marshal & Palmer and Carbonneau models, the performance of FSO communication system based on the OFDM is evaluated under the heavy-rain condition in Changsha, China. The simulation results show that, under a heavy-rainfall condition of 106.18 mm/h, with an attenuation factor of 7 dB/km based on the Marshal & Palmer model, the bit rate of 2.5 and 4.0 Gbps data can be transmitted over the FSO channels of 1.6 and 1.3 km, respectively, and the bit error rate of less than 1E − 4 can be achieved. In addition, the effect on rain attenuation over the FSO communication system based on the Marshal & Palmer model is less than that of the Carbonneau model.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Rajneesh Kumar ◽  
Love Kumar

AbstractFree-space optical (FSO) communication is a wireless optical data transmission technology with a high data transmission rate. It has received much attention in recent years as it is cost-effective and has license free operation. It is line of sight free-space communication technique where optical signal severely degraded from atmospheric losses especially due to weather conditions; hence it restricts the link range and data carrying capacity. Therefore, a 16-channel ultra-dense wavelength division multiplexing–free space optics (UWDM–FSO) system each having each 10 Gb/s data rate is proposed to enhance the capacity and performance of FSO system. To authenticate the performance of the proposed system, investigation for different modulation formats such as nonreturn to zero (NRZ), return to zero (RZ), carrier suppressed return to zero (CSRZ) and duo binary (DB) are reported. Further, to reduce the atmospheric interference, multiple input multiple output (MIMO) technique is integrated into the proposed system. The outcomes of MIMO–UWDM–FSO link revealed a significant improvement in the bit error rate (BER), eye diagram and Q-factor, under different weather conditions. It is also observed that NRZ modulation formats perform better than RZ, CSRZ and DB formats.


Author(s):  
Jamila Bhar ◽  
Imen Bouazzi

The future is moving towards offering multiples services based on the same technology. Then, billions of sensors will be needed to satisfy the diversity of these services. Such considerable amount of connected devices must insure efficient data transmission for diverse applications. Wireless sensor network (WSN) represents the most preferred technology for the majority of applications. Researches in medium access control (MAC) mechanism have been of significant impact to the application growth because the MAC layer plays a major role in resource allocation in WSNs. We propose to enhance a MAC protocol of WSN to overcome traffic changes constraints. To achieve focused goal, we use elastic hybrid MAC scheme. The main interest of the developed MAC protocol is to design a medium access scheme that respect different quality of services (QoS) parameters needed by various established traffic. Simulation results show good improvement in measured parameters compared to typical protocol.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ruhin Chowdhury ◽  
A. K. M. Sharoar Jahan Choyon

Abstract A comprehensive design is proposed for the free-space optical (FSO) communication system by hybridizing circular polarization division multiplexing (CPDM) with coherent optical orthogonal frequency division multiplexing (CO-OFDM) and its performance is investigated realistically under diverse turbulent weather conditions of Bangladesh. Here, we consider Gamma–Gamma distribution for the turbulent FSO channel model. Moreover, the proposed scheme presents an excellent performance since the CPDM technique not only maximizes the link capacity of the FSO system but also enhances the spectral efficiency of the system. Besides, multipath fading, which is appeared during the FSO transmission, is significantly mitigated by OFDM modulation. The outcomes from the simulation confirm the advantages of the proposed hybrid scheme and also it can serve as a reference for the FSO application even in turbulent weather conditions. Performance analysis of the proposed model is described in terms of the optical power spectrum, optical signal-to-noise ratio, bit error rate, Q factor, constellation diagrams, and eye diagrams.


Author(s):  
Rinkuben N. Patel ◽  
Nirav V. Bhatt

Background: WSN is a network of smart tiny electromechanical devices named as sensors. Sensors perform various tasks like sensing the environment as per its range, transmit the data using transmission units, store the data in the storage unit and perform an action based on captured data. As they are installed in an unfriendly environment, to recharge the sensors are not possible every time which leads to a limited lifetime of a network. To enhance the life of a sensor network, the network required energy-efficient protocols. Various energy-efficient MAC protocols are developed by Research community, but very few of them are integrated with the priority-based environment which performs the priority-based data transmission. Another challenge of WSN is, most of the WSN areas are delay-sensitive because it is implemented in critical fields like military, disaster management, and health monitoring. Energy, Delay, and throughput are major quality factors that affect the sensor network. Objective: In this paper, the aim is to design and develop a MAC Protocol for a field like the military where the system requires energy efficiency and priority-based data transmission. Method: In the proposed model, the cluster-based network with priority queues are formed that can achieve higher power efficiency and less delay for sensitive data. Results: In this research simulation of Proposed MAC, TMAC and SMAC are done with different numbers of nodes, same inter-packet intervals, and variant inter-packet intervals. Based on the script simulation, result graphs are generated. Conclusion: The proposed work achieves greater lifetime compared to TMAC and SMAC using priority-based data transmission.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Varun Srivastava ◽  
Abhilash Mandloi ◽  
Dhiraj Kumar Patel

AbstractFree space optical (FSO) communication refers to a line of sight technology, which comprises optical source and detector to create a link without the use of physical connections. Similar to other wireless communication links, these are severely affected by losses that emerged due to atmospheric turbulence and lead to deteriorated intensity of the optical signal at the receiver. This impairment can be compensated easily by enhancing the transmitter power. However, increasing the transmitter power has some limitations as per radiation regulations. The requirement of high transmit power can be reduced by employing diversity methods. This paper presents, a wavelength-based diversity method with equal gain combining receiver, an effective technique to provide matching performance to single input single output at a comparatively low transmit power.


Sign in / Sign up

Export Citation Format

Share Document