Field Study on Thermal Comfort and Adaptive Behaviors of University Students in the Cold Climate Zone

2021 ◽  
pp. 111-131
Author(s):  
Shimeng Hao ◽  
Zhonghua Gou ◽  
Yufei Zou ◽  
Xiaoshan Xing
Author(s):  
Ahad Nejad Ebrahimi ◽  
Farnaz Nazarzadeh ◽  
Elnaz Nazarzadeh

Throughout history, gardens and garden designing has been in the attention of Persian architects who had special expertise in the construction of gardens. The appearance of Islam and allegories of paradise taken from that in Koran and Saints’ sayings gave spirituality to garden construction. Climate conditions have also had an important role in this respect but little research has been done about it and most of the investigations have referred to spiritual aspects and forms of garden. The cold and dry climate that has enveloped parts of West and North West of Iran has many gardens with different forms and functions, which have not been paid much attention to by studies done so far. The aim of this paper is to identify the features and specifications of cold and dry climate gardens with an emphasis on Tabriz’s Gardens.  Due to its natural and strategic situation, Tabriz has always been in the attention of governments throughout history; travellers and tourists have mentioned Tabriz as a city that has beautiful gardens. But, the earthquakes and wars have left no remains of those beautiful gardens. This investigation, by a comparative study of the climates in Iran and the effect of those climates on the formation of gardens and garden design, tries to identify the features and characteristics of gardens in cold and dry climate. The method of study is interpretive-historical on the basis of written documents and historic features and field study of existing gardens in this climate. The results show that, with respect to natural substrate, vegetation, the form of water supply, and the general form of the garden; gardens in dry and cold climate are different from gardens in other climates.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 566
Author(s):  
Vanya Y. Draganova ◽  
Hiroki Yokose ◽  
Kazuyo Tsuzuki ◽  
Yuki Nabeshima

A summer field study was conducted in two university dormitories in the Tokai region of Central Japan. The study aimed at understanding the correlation between subjective thermal responses as well as whether nationality was affecting the responses. It was observed that nationality significantly affected thermal sensitivity and preference. The occupants’ acceptance for thermal stress was invariably above 90%. Despite the high levels of humidity observed, the multiple regression model showed that only the indoor air temperature was significant for explaining the variability of thermal sensation for both Japanese and non-Japanese students. The highest probability of voting neutral for university students in dormitory buildings in the Tokai region of Japan was estimated within 24~26.5 °C (by probit analysis). Japanese students were more sensitive to their indoor environment as opposed to the international students. The adjusted linear regression coefficient yielded from the room-wise day-wise averages were 0.48/K and 0.35/K for Japanese sensitivity and international sensitivity, respectively. In our study, the Griffiths’ model of estimating comfort temperature (or thermal neutrality) showed weak predictability and notable differences from the actually voted comfort. The neutral and comfort temperature observed and estimated in the study remained invariably below the recommended temperature threshold for Japan in summer leading to believe that that threshold is worth reevaluating.


Technologies ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 90
Author(s):  
Siliang Lu ◽  
Erica Cochran Hameen

Heating, ventilation and air-conditioning (HVAC) systems play a key role in shaping office environments. However, open-plan office buildings nowadays are also faced with problems like unnecessary energy waste and an unsatisfactory shared indoor thermal environment. Therefore, it is significant to develop a new paradigm of an HVAC system framework so that everyone could work under their preferred thermal environment and the system can achieve higher energy efficiency such as task ambient conditioning system (TAC). However, current task conditioning systems are not responsive to personal thermal comfort dynamically. Hence, this research aims to develop a dynamic task conditioning system featuring personal thermal comfort models with machine learning and the wireless non-intrusive sensing system. In order to evaluate the proposed task conditioning system performance, a field study was conducted in a shared office space in Shanghai from July to August. As a result, personal thermal comfort models with indoor air temperature, relative humidity and cheek (side face) skin temperature have better performances than baseline models with indoor air temperature only. Moreover, compared to personal thermal satisfaction predictions, 90% of subjects have better performances in thermal sensation predictions. Therefore, personal thermal comfort models could be further implemented into the task conditioning control of TAC systems.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8013
Author(s):  
Tony-Andreas Arntsen ◽  
Bozena Dorota Hrynyszyn

Window design affects the overall performance of a building. It is important to include window design during the initial stages of a project since it influences the performance of daylight and thermal comfort as well as the energy demand for heating and cooling. The Norwegian building code facilitates two alternative methods for achieving a sufficient daylight, and only guidelines for adequate indoor thermal comfort. In this study, a typical Norwegian residential building was modeled to investigate whether the criteria and methods facilitate consistent and good performance through different scenario changes and furthermore, how the national regulations compare to European standards. A better insulated and more air-tight building has usually a lower annual heating demand, with only a marginal decrease in the daylight performance when the window design is unchanged. A more air-tight construction increases the risk of overheating, even in cold climates. This study confirms that a revision of the window design improves the overall performance of a building, which highlights the importance of proper window design. The pursuit of lower energy demand should not be at the expense of indoor thermal comfort considering the anticipated future weather conditions. This study indicates that criteria for thermal comfort and daylight, if clearly defined, can affect the energy demand for heating and cooling, as well as the indoor climate positively, and should be taken into account at the national level. A comparison between the national regulations and the European standards was made, and this study found that the results are not consistent.


2016 ◽  
Vol 108 ◽  
pp. 220-229 ◽  
Author(s):  
Gang Liu ◽  
Chao Cen ◽  
Qi Zhang ◽  
Kuixing Liu ◽  
Rui Dang

Sign in / Sign up

Export Citation Format

Share Document