End-to-End Deep Learning Vector Autoregressive Prognostic Models to Predict Disease Progression with Uneven Time Intervals

Author(s):  
Joshua Bridge ◽  
Simon Harding ◽  
Yalin Zheng
2020 ◽  
Author(s):  
Chenxi Sun ◽  
Shenda Hong ◽  
Moxian Song ◽  
Zhenjie Wang ◽  
Hongyan Li

Abstract Background: The coronavirus disease 2019 (COVID-19) pandemic has caused health concerns worldwide since December 2019. From the beginning of infection, patients will progress through different symptom stages, such as fever, dyspnea or even death. Identifying disease progression and predicting patient outcome at an early stage helps target treatment and resource allocation. However, there is no clear COVID-19 stage definition, and few studies have addressed characterizing COVID-19 progression, making the need for this study evident.Methods: We proposed a temporal deep learning method, based on a time-aware long short-term memory (T-LSTM) neural network and used an online open dataset, including blood samples of 485 patients from Wuhan, China, to train the model. Specifically, our method predicted the outcome of COVID-19 patients by T-LSTM, considering both the biomarkers and the irregular time intervals. Then, we used the patient representations, extracted from T-LSTM units, to subtype the patient stages and describe the disease progression of COVID-19.Results: Using our method, the accuracy of the outcome of prediction results was more than 90% at 12 days and 98%, 95% and 93% at 3, 6, and 9 days, respectively. Most importantly, we found 4 stages of COVID-19 progression, with different patient statuses and risks, such as mortality and length of illness. Predicting which of the 4 stages the patient is currently in can help doctors better assess and cure the patient. Conclusions: To combat the COVID-19 epidemic, this paper aims to help clinicians better assess and treat infected patients, provide relevant researchers with potential disease progression patterns, and enable more effective use of medical resources. Our method predicted patient outcomes with high accuracy and identified a four-stage disease progression. We hope that the obtained results and patterns will aid in fighting the disease.


2021 ◽  
Vol 13 (2) ◽  
pp. 274
Author(s):  
Guobiao Yao ◽  
Alper Yilmaz ◽  
Li Zhang ◽  
Fei Meng ◽  
Haibin Ai ◽  
...  

The available stereo matching algorithms produce large number of false positive matches or only produce a few true-positives across oblique stereo images with large baseline. This undesired result happens due to the complex perspective deformation and radiometric distortion across the images. To address this problem, we propose a novel affine invariant feature matching algorithm with subpixel accuracy based on an end-to-end convolutional neural network (CNN). In our method, we adopt and modify a Hessian affine network, which we refer to as IHesAffNet, to obtain affine invariant Hessian regions using deep learning framework. To improve the correlation between corresponding features, we introduce an empirical weighted loss function (EWLF) based on the negative samples using K nearest neighbors, and then generate deep learning-based descriptors with high discrimination that is realized with our multiple hard network structure (MTHardNets). Following this step, the conjugate features are produced by using the Euclidean distance ratio as the matching metric, and the accuracy of matches are optimized through the deep learning transform based least square matching (DLT-LSM). Finally, experiments on Large baseline oblique stereo images acquired by ground close-range and unmanned aerial vehicle (UAV) verify the effectiveness of the proposed approach, and comprehensive comparisons demonstrate that our matching algorithm outperforms the state-of-art methods in terms of accuracy, distribution and correct ratio. The main contributions of this article are: (i) our proposed MTHardNets can generate high quality descriptors; and (ii) the IHesAffNet can produce substantial affine invariant corresponding features with reliable transform parameters.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Kwang-Hyun Uhm ◽  
Seung-Won Jung ◽  
Moon Hyung Choi ◽  
Hong-Kyu Shin ◽  
Jae-Ik Yoo ◽  
...  

AbstractIn 2020, it is estimated that 73,750 kidney cancer cases were diagnosed, and 14,830 people died from cancer in the United States. Preoperative multi-phase abdominal computed tomography (CT) is often used for detecting lesions and classifying histologic subtypes of renal tumor to avoid unnecessary biopsy or surgery. However, there exists inter-observer variability due to subtle differences in the imaging features of tumor subtypes, which makes decisions on treatment challenging. While deep learning has been recently applied to the automated diagnosis of renal tumor, classification of a wide range of subtype classes has not been sufficiently studied yet. In this paper, we propose an end-to-end deep learning model for the differential diagnosis of five major histologic subtypes of renal tumors including both benign and malignant tumors on multi-phase CT. Our model is a unified framework to simultaneously identify lesions and classify subtypes for the diagnosis without manual intervention. We trained and tested the model using CT data from 308 patients who underwent nephrectomy for renal tumors. The model achieved an area under the curve (AUC) of 0.889, and outperformed radiologists for most subtypes. We further validated the model on an independent dataset of 184 patients from The Cancer Imaging Archive (TCIA). The AUC for this dataset was 0.855, and the model performed comparably to the radiologists. These results indicate that our model can achieve similar or better diagnostic performance than radiologists in differentiating a wide range of renal tumors on multi-phase CT.


Diagnostics ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 215
Author(s):  
Gurpreet Singh ◽  
Subhi Al’Aref ◽  
Benjamin Lee ◽  
Jing Lee ◽  
Swee Tan ◽  
...  

Conventional scoring and identification methods for coronary artery calcium (CAC) and aortic calcium (AC) result in information loss from the original image and can be time-consuming. In this study, we sought to demonstrate an end-to-end deep learning model as an alternative to the conventional methods. Scans of 377 patients with no history of coronary artery disease (CAD) were obtained and annotated. A deep learning model was trained, tested and validated in a 60:20:20 split. Within the cohort, mean age was 64.2 ± 9.8 years, and 33% were female. Left anterior descending, right coronary artery, left circumflex, triple vessel, and aortic calcifications were present in 74.87%, 55.82%, 57.41%, 46.03%, and 85.41% of patients respectively. An overall Dice score of 0.952 (interquartile range 0.921, 0.981) was achieved. Stratified by subgroups, there was no difference between male (0.948, interquartile range 0.920, 0.981) and female (0.965, interquartile range 0.933, 0.980) patients (p = 0.350), or, between age <65 (0.950, interquartile range 0.913, 0.981) and age ≥65 (0.957, interquartile range 0.930, 0.9778) (p = 0.742). There was good correlation and agreement for CAC prediction (rho = 0.876, p < 0.001), with a mean difference of 11.2% (p = 0.100). AC correlated well (rho = 0.947, p < 0.001), with a mean difference of 9% (p = 0.070). Automated segmentation took approximately 4 s per patient. Taken together, the deep-end learning model was able to robustly identify vessel-specific CAC and AC with high accuracy, and predict Agatston scores that correlated well with manual annotation, facilitating application into areas of research and clinical importance.


2008 ◽  
Vol 134 (4) ◽  
pp. A-457
Author(s):  
Marc Ferrante ◽  
Tamara Coopmans ◽  
Isabelle Cleynen ◽  
Nathalie Vermeulen ◽  
Marie Joossens ◽  
...  

Author(s):  
Georgios Kaissis ◽  
Alexander Ziller ◽  
Jonathan Passerat-Palmbach ◽  
Théo Ryffel ◽  
Dmitrii Usynin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document