scholarly journals Adapting Behaviors via Reactive Synthesis

Author(s):  
Gal Amram ◽  
Suguman Bansal ◽  
Dror Fried ◽  
Lucas Martinelli Tabajara ◽  
Moshe Y. Vardi ◽  
...  

AbstractIn the Adapter Design Pattern, a programmer implements a Target interface by constructing an Adapter that accesses an existing Adaptee code. In this work, we present a reactive synthesis interpretation to the adapter design pattern, wherein an algorithm takes an Adaptee and a Target transducers, and the aim is to synthesize an Adapter transducer that, when composed with the Adaptee, generates a behavior that is equivalent to the behavior of the Target. One use of such an algorithm is to synthesize controllers that achieve similar goals on different hardware platforms. While this problem can be solved with existing synthesis algorithms, current state-of-the-art tools fail to scale. To cope with the computational complexity of the problem, we introduce a special form of specification format, called Separated GR(k), which can be solved with a scalable synthesis algorithm but still allows for a large set of realistic specifications. We solve the realizability and the synthesis problems for Separated GR(k), and show how to exploit the separated nature of our specification to construct better algorithms, in terms of time complexity, than known algorithms for GR(k) synthesis. We then describe a tool, called SGR(k), that we have implemented based on the above approach and show, by experimental evaluation, how our tool outperforms current state-of-the-art tools on various benchmarks and test-cases.

Author(s):  
Qiming Fu ◽  
Quan Liu ◽  
Shan Zhong ◽  
Heng Luo ◽  
Hongjie Wu ◽  
...  

In reinforcement learning (RL), the exploration/exploitation (E/E) dilemma is a very crucial issue, which can be described as searching between the exploration of the environment to find more profitable actions, and the exploitation of the best empirical actions for the current state. We focus on the single trajectory RL problem where an agent is interacting with a partially unknown MDP over single trajectories, and try to deal with the E/E in this setting. Given the reward function, we try to find a good E/E strategy to address the MDPs under some MDP distribution. This is achieved by selecting the best strategy in mean over a potential MDP distribution from a large set of candidate strategies, which is done by exploiting single trajectories drawn from plenty of MDPs. In this paper, we mainly make the following contributions: (1) We discuss the strategy-selector algorithm based on formula set and polynomial function. (2) We provide the theoretical and experimental regret analysis of the learned strategy under an given MDP distribution. (3) We compare these methods with the “state-of-the-art” Bayesian RL method experimentally.


Author(s):  
Anete Vagale ◽  
Robin T. Bye ◽  
Rachid Oucheikh ◽  
Ottar L. Osen ◽  
Thor I. Fossen

AbstractArtificial intelligence is an enabling technology for autonomous surface vehicles, with methods such as evolutionary algorithms, artificial potential fields, fast marching methods, and many others becoming increasingly popular for solving problems such as path planning and collision avoidance. However, there currently is no unified way to evaluate the performance of different algorithms, for example with regard to safety or risk. This paper is a step in that direction and offers a comparative study of current state-of-the art path planning and collision avoidance algorithms for autonomous surface vehicles. Across 45 selected papers, we compare important performance properties of the proposed algorithms related to the vessel and the environment it is operating in. We also analyse how safety is incorporated, and what components constitute the objective function in these algorithms. Finally, we focus on comparing advantages and limitations of the 45 analysed papers. A key finding is the need for a unified platform for evaluating and comparing the performance of algorithms under a large set of possible real-world scenarios.


1995 ◽  
Vol 38 (5) ◽  
pp. 1126-1142 ◽  
Author(s):  
Jeffrey W. Gilger

This paper is an introduction to behavioral genetics for researchers and practioners in language development and disorders. The specific aims are to illustrate some essential concepts and to show how behavioral genetic research can be applied to the language sciences. Past genetic research on language-related traits has tended to focus on simple etiology (i.e., the heritability or familiality of language skills). The current state of the art, however, suggests that great promise lies in addressing more complex questions through behavioral genetic paradigms. In terms of future goals it is suggested that: (a) more behavioral genetic work of all types should be done—including replications and expansions of preliminary studies already in print; (b) work should focus on fine-grained, theory-based phenotypes with research designs that can address complex questions in language development; and (c) work in this area should utilize a variety of samples and methods (e.g., twin and family samples, heritability and segregation analyses, linkage and association tests, etc.).


1976 ◽  
Vol 21 (7) ◽  
pp. 497-498
Author(s):  
STANLEY GRAND

10.37236/24 ◽  
2002 ◽  
Vol 1000 ◽  
Author(s):  
A. Di Bucchianico ◽  
D. Loeb

We survey the mathematical literature on umbral calculus (otherwise known as the calculus of finite differences) from its roots in the 19th century (and earlier) as a set of “magic rules” for lowering and raising indices, through its rebirth in the 1970’s as Rota’s school set it on a firm logical foundation using operator methods, to the current state of the art with numerous generalizations and applications. The survey itself is complemented by a fairly complete bibliography (over 500 references) which we expect to update regularly.


2009 ◽  
Vol 5 (4) ◽  
pp. 359-366 ◽  
Author(s):  
Osvaldo Santos-Filho ◽  
Anton Hopfinger ◽  
Artem Cherkasov ◽  
Ricardo de Alencastro

Author(s):  
Florian Kuisat ◽  
Fernando Lasagni ◽  
Andrés Fabián Lasagni

AbstractIt is well known that the surface topography of a part can affect its mechanical performance, which is typical in additive manufacturing. In this context, we report about the surface modification of additive manufactured components made of Titanium 64 (Ti64) and Scalmalloy®, using a pulsed laser, with the aim of reducing their surface roughness. In our experiments, a nanosecond-pulsed infrared laser source with variable pulse durations between 8 and 200 ns was applied. The impact of varying a large number of parameters on the surface quality of the smoothed areas was investigated. The results demonstrated a reduction of surface roughness Sa by more than 80% for Titanium 64 and by 65% for Scalmalloy® samples. This allows to extend the applicability of additive manufactured components beyond the current state of the art and break new ground for the application in various industrial applications such as in aerospace.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yangfan Xu ◽  
Xianqun Fan ◽  
Yang Hu

AbstractEnzyme-catalyzed proximity labeling (PL) combined with mass spectrometry (MS) has emerged as a revolutionary approach to reveal the protein-protein interaction networks, dissect complex biological processes, and characterize the subcellular proteome in a more physiological setting than before. The enzymatic tags are being upgraded to improve temporal and spatial resolution and obtain faster catalytic dynamics and higher catalytic efficiency. In vivo application of PL integrated with other state of the art techniques has recently been adapted in live animals and plants, allowing questions to be addressed that were previously inaccessible. It is timely to summarize the current state of PL-dependent interactome studies and their potential applications. We will focus on in vivo uses of newer versions of PL and highlight critical considerations for successful in vivo PL experiments that will provide novel insights into the protein interactome in the context of human diseases.


Sign in / Sign up

Export Citation Format

Share Document