Soybean Tocopherols: Biosynthesis, Factors Affecting Seed Content, QTL Mapping, and Candidate Genes

2021 ◽  
pp. 589-619
Author(s):  
Moulay Abdelmajid Kassem
2016 ◽  
Vol 7 ◽  
Author(s):  
Danna Liang ◽  
Minyang Chen ◽  
Xiaohua Qi ◽  
Qiang Xu ◽  
Fucai Zhou ◽  
...  

Rice ◽  
2016 ◽  
Vol 9 (1) ◽  
Author(s):  
Likai Chen ◽  
Weiwei Gao ◽  
Siping Chen ◽  
Liping Wang ◽  
Jiyong Zou ◽  
...  

2021 ◽  
Author(s):  
Zhihui Wang ◽  
Liying Yan ◽  
Yuning Chen ◽  
Xin Wang ◽  
Dongxin Huai ◽  
...  

Abstract Seed weight is a major target of peanut breeding as an important component of seed yield. However, relatively little is known about QTLs and candidate genes associated with seed weight in peanut. In this study, three major QTLs on chromosomes A05, B02 and B06 were determined by applying NGS-based QTL-seq approach for a RIL population. These three QTL regions have been successfully narrowed down through newly developed SNP and SSR markers based on traditional QTL mapping. Among these three QTL regions, qSWB06.3 exhibited stable expression with large contribution to phenotypic variance across all environments. Furthermore, RNA-seq were applied for early, middle and late stages of seed development, and differentially expression genes (DEGs) were identified in ubiquitin-proteasome pathway, serine/threonine protein pathway and signal transduction of hormones and transcription factors. Notably, DEGs at early stage were majorly related to regulating cell division, whereas DEGs at middle and late stages were mainly associated with cell expansion during seed development. Through integrating SNP variation, gene expression and functional annotation, candidate genes related to seed weight in qSWB06.3 were predicted and distinct expression pattern of those genes were exhibited using qRT-PCR. In addition, KASP-markers in qSWB06.3 were successfully validated in diverse peanut varieties and the alleles of parent Zhonghua16 in qSWB06.3 was associated with high seed weight. This suggested that qSWB06.3 was reliable and the markers in qSWB06.3 could be deployed in marker-assisted breeding to enhance seed weight. This study provided insights into the understanding of genetic and molecular mechanisms of seed weight in peanut.


Genes ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 803 ◽  
Author(s):  
Wang ◽  
Yan ◽  
Li ◽  
Li ◽  
Zhao ◽  
...  

Peanut (Arachis hypogaea L.) is one of the most important oil crops worldwide, and its yet increasing market demand may be met by genetic improvement of yield related traits, which may be facilitated by a good understanding of the underlying genetic base of these traits. Here, we have carried out a genome-wide association study (GWAS) with the aim to identify genomic regions and the candidate genes within these regions that may be involved in determining the phenotypic variation at seven yield-related traits in peanut. For the GWAS analyses, 195 peanut accessions were phenotyped and/or genotyped; the latter was done using a genotyping-by-sequencing approach, which produced a total of 13,435 high-quality single nucleotide polymorphisms (SNPs). Analyses of these SNPs show that the analyzed peanut accessions can be approximately grouped into two big groups that, to some extent, agree with the botanical classification of peanut at the subspecies level. By taking this genetic structure as well as the relationships between the analyzed accessions into consideration, our GWAS analyses have identified 93 non-overlapping peak SNPs that are significantly associated with four of the studied traits. Gene annotation of the genome regions surrounding these peak SNPs have found a total of 311 unique candidate genes. Among the 93 yield-related-trait-associated SNP peaks, 12 are found to be co-localized with the quantitative trait loci (QTLs) that were identified by earlier related QTL mapping studies, and these 12 SNP peaks are only related to three traits and are almost all located on chromosomes Arahy.05 and Arahy.16. Gene annotation of these 12 co-localized SNP peaks have found 36 candidates genes, and a close examination of these candidate genes found one very interesting gene (arahy.RI9HIF), the rice homolog of which produces a protein that has been shown to improve rice yield when over-expressed. Further tests of the arahy.RI9HIF gene, as well as other candidate genes especially those within the more confident co-localized genomic regions, may hold the potential for significantly improving peanut yield.


Aquaculture ◽  
2020 ◽  
Vol 527 ◽  
pp. 735427
Author(s):  
Ruihui Shi ◽  
Chunyan Li ◽  
Haigang Qi ◽  
Sheng Liu ◽  
Wei Wang ◽  
...  

2015 ◽  
Vol 48 (1) ◽  
pp. 246-258 ◽  
Author(s):  
Min Hui ◽  
Zhaoxia Cui ◽  
Yuan Liu ◽  
Chengwen Song ◽  
Yingdong Li ◽  
...  

Genetics ◽  
2021 ◽  
Vol 217 (1) ◽  
Author(s):  
Elizabeth R Everman ◽  
Kristen M Cloud-Richardson ◽  
Stuart J Macdonald

Abstract A range of heavy metals are required for normal cell function and homeostasis. However, the anthropogenic release of metal compounds into soil and water sources presents a pervasive health threat. Copper is one of many heavy metals that negatively impacts diverse organisms at a global scale. Using a combination of quantitative trait locus (QTL) mapping and RNA sequencing in the Drosophila Synthetic Population Resource, we demonstrate that resistance to the toxic effects of ingested copper in D. melanogaster is genetically complex and influenced by allelic and expression variation at multiple loci. QTL mapping identified several QTL that account for a substantial fraction of heritability. Additionally, we find that copper resistance is impacted by variation in behavioral avoidance of copper and may be subject to life-stage specific regulation. Gene expression analysis further demonstrated that resistant and sensitive strains are characterized by unique expression patterns. Several of the candidate genes identified via QTL mapping and RNAseq have known copper-specific functions (e.g., Ccs, Sod3, CG11825), and others are involved in the regulation of other heavy metals (e.g., Catsup, whd). We validated several of these candidate genes with RNAi suggesting they contribute to variation in adult copper resistance. Our study illuminates the interconnected roles that allelic and expression variation, organism life stage, and behavior play in copper resistance, allowing a deeper understanding of the diverse mechanisms through which metal pollution can negatively impact organisms.


2018 ◽  
Vol 293 (6) ◽  
pp. 1421-1435 ◽  
Author(s):  
Tengyue Wang ◽  
Lintao Hou ◽  
Hongju Jian ◽  
Feifei Di ◽  
Jiana Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document