Improved Method of Parallel DC-DC Boost Converter Based on Main Current Control

2021 ◽  
pp. 566-574
Author(s):  
Lirong Wang
Author(s):  
Fouad Farah ◽  
Mustapha El Alaoui ◽  
Abdelali El Boutahiri ◽  
Mounir Ouremchi ◽  
Karim El Khadiri ◽  
...  

In this paper, we aim to make a detailed study on the evaluation and the characteristics of the non-inverting buck–boost converter. In order to improve the behaviour of the buck-boost converter for the three operating modes, we propose an architecture based on peak current-control. Using a three modes selection circuit and a soft start circuit, this converter is able to expand the power conversion efficiency and reduce inrush current at the feedback loop. The proposed converter is designed to operate with a variable output voltage. In addition, we use LDMOS transistors with low on-resistance, which are adequate for HV applications. The obtained results show that the proposed buck-boost converter perform perfectly compared to others architecture and it is successfully implemented using 0.18 μm CMOS TSMC technology, with an output voltage regulated to 12V and input voltage range of 4-20 V. The power conversion efficiency for the three operating modes buck, boost and buck-boost are 97.6%, 96.3% and 95.5% respectively at load current of 4A.


2020 ◽  
Vol 10 (20) ◽  
pp. 7179
Author(s):  
Catalina González-Castaño ◽  
Carlos Restrepo ◽  
Roberto Giral ◽  
Enric Vidal-Idiarte ◽  
Javier Calvente

This paper analyzes the presence of undesired quantization-induced perturbations (QIP) in a dc-dc buck-boost converter using a two-loop digital current control. This work introduces design conditions regarding control laws gains and signal quantization to avoid the quantization effects due to the addition of the outer voltage loop in a digital current controlled converter. The two-loop controller is composed of a multisampled average current control (MACC) in the inner current-programmed loop and a proportional-integrator compensator at the external loop. QIP conditions have been evaluated through simulations and experiments using a digitally controlled pulse width modulation (DPWM) buck-boost converter. A 400 V 1.6 kW proof-of-concept converter has been used to illustrate the presence of QIP and verify the design conditions. The controller is programmed in a digital signal controller (DSC) TMS320F28377S with a DPWM with 8.96-bit equivalent resolution, a 12-bit ADC for current sampling, and a 12-bit ADC for voltage sampling or a 16-bit ADC for voltage error sampling.


2011 ◽  
Vol 58 (8) ◽  
pp. 1967-1979 ◽  
Author(s):  
Jen-Chieh Tsai ◽  
Chi-Lin Chen ◽  
Yu-Huei Lee ◽  
Hong-Yuan Yang ◽  
Ming-Shen Hsu ◽  
...  

Author(s):  
Shengpeng Tang ◽  
Xianzhi Meng ◽  
Donglie Gu ◽  
Jianxiong Xi ◽  
Lenian He ◽  
...  

2016 ◽  
Vol 51 (10) ◽  
pp. 2389-2397 ◽  
Author(s):  
Tomoya Ishii ◽  
Sheyang Ning ◽  
Masahiro Tanaka ◽  
Kota Tsurumi ◽  
Ken Takeuchi

DC-DC buck boost converter is a conversion circuit using induced frequency inductors, switching.DC-DC converters dynamics was improved by using self calibrated preemptive current control. As, a result Preemptive concurrent control reduces capacitor size by 10x.DC DC buck converter with pulse width modulation.DC-DC buck converter with two step pulse width modulation was utilized for low power application by using delay, control line. Main motive of DC-DC buck converter with pulse width modulations obtains high linearity, high granularity. Conversion efficiency for Light load current was increased in buck converter by clocked hysteresis scheme. Power supplied to comparator was scaled to load easily. Conventional buck converter was integrated with LED to expand smart bulb. Main power from supply was decoupled by Non linear ramp control scheme preventing LED output flickering. Control scheme effectiveness was improved by small signal model. Three major characteristics of Light emitting diodes are improved lifetime, high efficiency, increased reliability, controllability. High brightness LED by multicell three phases was used for its lower cost. Heart beat was identified by using raspberry pi, system on chip with three stages in it namely Heart beat determination, Impedence, cardiography parameters. Accidents was restricted by this method.Overspeeding vehicles was identified was main goal of using complex proportional assessment method. Converting Rice husk into bio fuels was performed by thermo chemical processes. Rice hulk silica was utilized for fluorescent silica particles synthesis.


Sign in / Sign up

Export Citation Format

Share Document