Simulation of Fatigue Life for 316L Stainless Steel Under Room Temperature Using Finite Element Analysis

Author(s):  
Khairul Azhar Mohammad ◽  
Anmbarasan Ragendran ◽  
Suriani Mat Jusoh ◽  
Muhammad Nur Farhan Saniman ◽  
Khairul Anuar Abd Wahid ◽  
...  
2013 ◽  
Vol 668 ◽  
pp. 844-849 ◽  
Author(s):  
Nai Fei Ren ◽  
Dian Wang ◽  
Lei Jia ◽  
Xiao Bing Ge

Finite element analysis software ANSYS is a platform, Using the Parametric Design Language of APDL language to write programs to simulate the temperature field of the laser sintering of 316L stainless steel powder. Building the model of Finite element analysis to analysis the simulation's various difficulties, such as the thermal parameters at different temperatures, the loading of the heat flux and some of the key parameters. Researching the affect of laser power and scanning speed on the temperature field, it’s valuable in researching the temperature field of the metal powder sintering


2016 ◽  
Vol 1133 ◽  
pp. 70-74
Author(s):  
Mohd Yusof Baharuddin ◽  
S. Hussain Salleh ◽  
Alias Mohd Nor ◽  
Muhammad Hisyam Lee ◽  
Ahmad Hafiz Zulkifly ◽  
...  

Total hip replacement (THR) is a flourishing orthopaedic surgery which generating billion of dollars of revenue. The cost associated with the fabrication of implants has been increasing year by year and this phenomenon has burdened the patient with extra charges. Consequently, this study will focus on designing an accurate implant via implementing the reverse engineering of three dimensional morphological study based on a particular population. By using the finite element analysis, this study will assist to predict the outcome and could become a useful tool for pre-clinical testing of newly designed implant. A prototype is then fabricated using 316L stainless steel by applying investment casting techniques which reduce manufacturing cost without jeopardizing implant quality. The finite element analysis showed the maximum von Mises stress was 66.88 MPa proximally with a safety factor of 2.39 against endosteal fracture, and micromotion was 4.73 μm which promotes osseointegration. This method offers a fabrication process of cementless femoral stems with lower cost, subsequently helping patients, particularly those from non developed countries.


2019 ◽  
Vol 969 ◽  
pp. 508-516 ◽  
Author(s):  
Rahul Singh ◽  
Surya Deo Yadav ◽  
Nikhil Malviya ◽  
Sunkulp Goel ◽  
R. Jayaganthan ◽  
...  

The present work deals with plastic deformation of 316L austenitic stainless steel (ASS) using room temperature rolling process. After solution treatment (annealing) as-received 316L ASS has been rolled for up to 90% of thickness reduction. To investigate the effect of processing on mechanical properties microstructural study, tensile and hardness tests have been conducted. The ultimate tensile strength has been improved from 767 MPa (before deformation) to 1420 MPa (after 90% deformation), and hardness value has been increased from 208 VHN (before deformation) to 449 VHN (after 90% reduction). Magnetic measurements and XRD characterization have been performed to confirm the formation of martensitic phase. Finite element analysis have also been simulated employing DEFORM-3D software to get the insight about deformation behavior. Keywords: Room temperature rolling, Finite Element Analysis, Mechanical properties, Austenitic stainless steel.


2014 ◽  
Vol 804 ◽  
pp. 243-247 ◽  
Author(s):  
Dinh van Hai ◽  
Hoang Minh Tam ◽  
Duong van Quang

In this study, the effects of supereslasticity of Nitinol for self-expanding (SX) stents – Stent devices which are implanted into the blood vessels in order to restore blood flow in a diseased artery segment (narrowing of the blood vessel due to plaque build-up) and keep the artery open after angioplasty were considered and analyzed. To emphasize the unique properties of Nitinol as compared to other materials, this study was conducted to differentiate the behaviors of two types of stents which are made of Nititol and 316L stainless steel during implantation. Finite element analysis was used for simulation and modeling. The study results are expected to serve well the design of vessel stents.


2001 ◽  
Vol 42 (5) ◽  
pp. 809-813 ◽  
Author(s):  
Young-Eui Shin ◽  
Kyung-Woo Lee ◽  
Kyong-Ho Chang ◽  
Seung-Boo Jung ◽  
Jae Pil Jung

2019 ◽  
Vol 17 (1) ◽  
pp. 25-40 ◽  
Author(s):  
Hafida Kahoul ◽  
Samira Belhour ◽  
Ahmed Bellaouar ◽  
Jean Paul Dron

Purpose This paper aims to present the fatigue life behaviour of upper arm suspension. The main objectives are to predict the fatigue life of the component and to identify the critical location. In this analysis, three aluminium alloys were used for the suspension, and their fatigue life was compared to select the suitable material for the suspension arm. Design/methodology/approach CAD model was prepared using Solid Works software, and finite element analysis was done using ANSYS 14.0 software by importing the Parasolid file to ANSYS. The model is subjected to loading and boundary conditions; the authors consider a vertical force with constant amplitude applied at the bushing that connected to the tire, the others two bushing that connected to the body of the car are constraint. Tetrahedral elements given enhanced results as compared to other types of elements; therefore, the elements (TET 10) are used. The maximum principal stress was considered in the linear static analysis, and fatigue analysis was done using strain life approach. Findings Life and damage are evaluated and the critical location was considered at node 63,754. From the fatigue analysis, aluminium alloys 7175-T73 (Al 90%-Zn 5.6%-Mg 2.5% -… …) and 2014-T6 (Al 93.5%-Cu 4.4%-Mg 0.5%… …) present a similar behaviour as compared to 6061-T6 (Al 97.9%-Mg 1.0%-Si 0.6%… … .); in this case of study, these lather are considered to be the materials of choice to manufacture the suspension arms; but 7175-T73 aluminium alloys remain the material with a better resistance to fatigue. Originality/value By the finite element analysis method and assistance of ANSYS software, it is able to analyse the different car components from varied aspects such as fatigue, and consequently save time and cost. For further research, the experimental works under controlled laboratory conditions should be done to determine the validation of the result from the software analysis.


Sign in / Sign up

Export Citation Format

Share Document