room temperature rolling
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 15)

H-INDEX

5
(FIVE YEARS 1)

2021 ◽  
Vol 904 ◽  
pp. 76-81
Author(s):  
Jia Zhi Li ◽  
Hua Ding ◽  
Wei Lin Gao

The effect of pre-aging on properties of Cu0.24Cr0.20Sn alloy before rolling and aging was studied in details. The results displayed the pre-aging was useful to improve the microhardness and conductivity of Cu0.24Cr0.20Sn alloy before cold rolling and aging, and the effect increased with the extension of pre-aging time. The microhardness and electrical conductivity of Cu0.24Cr0.20Sn alloy by first pre-aging at 400 °C for 2 h, second 85% rolling and then aging at 300 °C for 1 h can reach 189 HV and 85.4 %IACS, respectively. The TEM results indicated the density of precipitates increased with the increase of pre-aging time, and the interaction between precipitates and dislocations was gradually strengthened in the subsequent room-temperature rolling. The increase caused by pre-aging treatment before rolling and aging was mainly due to dislocation density strengthening.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yun Tan ◽  
Wei Li ◽  
Aiwen Li ◽  
Xiaofang Shi

AbstractThe microstructure evolution, texture, mechanical behavior and twin deformation of the ECAPed Mg–2Y–0.6Nd–0.6Zr alloy at room and liquid nitrogen temperature were investigated by rolling samples. The ECAP processed material appeared the texture of 45° to the extrusion direction and its yield strength reached 93.6 MPa. The results showed that cryorolling encourages twinning in Mg–2Y–0.6Nd–0.6Zr alloy, enhancing the tensile strength and texture. Activation of {10–12} twinning during rolling was found to be more pronounced in the cryorolled samples than in the cold rolled samples owing to a lower temperature. As a result, the cryorolled samples had more twins than and cold rolled ones, the proportion of twin areas of room temperature rolling and ultra-low temperature rolling were: 2.45% and 4.23%.


Author(s):  
Yuehong Zheng ◽  
He Zhao ◽  
Sijia Zhu ◽  
Peiqing La ◽  
Faqi Zhan ◽  
...  

The metallic element Mo has almost no solid solubility in copper and can be used as a nucleation particle to refine the grain size and increase the recrystallization temperature of the alloy during solidification. It is expected to obtain copper alloys with good comprehensive properties by reasonably controlling the addition amount of Mo. However, it is difficult to prepare Cu–Mo alloys with uniform structure and there are few related literatures. In this paper, the aluminothermic reaction method, which has the advantages of simple process, low cost, and large size of the prepared alloy, was adopted, and a cluster model with the atomic ratio of Mo and Ni of 1:12 was introduced to design the alloy composition. Here, five alloys with different copper contents were prepared and followed by room temperature rolling with 40%, 60%, and 80% deformation. The results show that the as-cast Cu–Ni–Mo alloys exhibit good formability, have no macroscopic defects and present a small amount of precipitates. With the increase of alloy elements Ni and Mo, the hardness and strength of the alloys increase obviously, while the electrical conductivity decreases gradually. For the rolled alloys, a large number of lamellar deformed structures are formed, the grains are obviously refined, the precipitated phases are broken and the distribution is more uniform, thus the strength and hardness of the alloy increase significantly, the plasticity decrease significantly, while the conductivity changed little. In this study, high-strength samples were obtained, which may be a valuable exploration for the preparation of Cu–Ni–Mo alloy sheets with excellent microstructure and mechanical properties.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4025
Author(s):  
Zhide Li ◽  
Yuze Wu ◽  
Zhibao Xie ◽  
Charlie Kong ◽  
Hailiang Yu

High-purity (99.999%) nickel with lamellar-structure grains (LG) was obtained by room-temperature rolling and cryorolling in this research, and then annealed at different temperatures (75 °C, 160 °C, and 245 °C). The microstructure was characterized by transmission electron microscopy. The grain growth mechanism during annealing of the LG materials obtained via different processes was studied. Results showed that the LG high-purity nickel obtained by room-temperature rolling had a static discontinuous recrystallization during annealing, whereas that obtained by cryorolling underwent static and continuous recrystallization during annealing, which was caused by the seriously inhibited dislocation recovery in the rolling process under cryogenic conditions, leading to more accumulated deformation energy storage in sheets.


2021 ◽  
Author(s):  
Yun Tan ◽  
Wei Li ◽  
Aiwen Li ◽  
Xiaofang Shi

Abstract The microstructure evolution, texture, mechanical behavior and twin deformation of the ECAPed Mg-2Y-0.6Nd-0.6Zr alloy at liquid nitrogen temperature were investigated by rolling samples. The ECAP processed material appeared the texture of 45 ° to the extrusion direction and its yield strength reached 93.6 MPa. The results showed that cryorolling encourages twinning in Mg-2Y-0.6Nd-0.6Zr alloy, enhancing the tensile strength and texture. Activation of {10-12} twinning during rolling was found to be more pronounced in the cryorolled samples than in the cold rolled samples owing to a lower temperature. As a result, the cryorolled samples had more twins than and cold rolled ones, the proportion of twin areas of room temperature rolling and ultra-low temperature rolling were: 2.445% and 4.234%.


2021 ◽  
Vol 71 (03) ◽  
pp. 383-389
Author(s):  
Rahul Singh ◽  
Surya Deo Yadav ◽  
Biraj Kumar Sahoo ◽  
Sandip Ghosh Chowdhury ◽  
Abhishek Kumar

The present work investigates the effect of rolling (90% thickness reduction) on phase transformation, mechanical properties, and corrosion behaviour of 304L-austenitic stainless steel through cryorolling and room temperature rolling. The processed steel sheets were characterised through X-ray diffraction (XRD), electron backscattered diffraction (EBSD), and vibrating sample magnetometer (VSM). The analysis of XRD patterns, EBSD scan, and vibrating sample magnetometer results confirmed the transformation of the austenitic phase to the martensitic phase during rolling. Cryorolling resulted in improved tensile strength and microhardness of 1808 MPa and 538 VHN, respectively, as compared to 1566 MPa and 504 VHN for room temperature rolling. The enhancement in properties of cryorolled steel is attributed to its higher dislocation density compared to room temperature rolled steel. The corrosion behaviour was assessed via linear polarisation corrosion tests. Corrosion resistance was found to decrease with increasing rolling reduction in both room temperature rolled and cryorolled specimens.


2020 ◽  
Vol 993 ◽  
pp. 86-91
Author(s):  
Jin Tao Shi ◽  
Jin Rong Zuo ◽  
Ji Shan Zhang

The microstructure, mechanical properties, texture evolution and microstructure-property relationship of 5052 Al alloy by cryogenic-rolling (CR) and room-temperature rolling (RTR) were investigated. The results show that CR can effectively refine the grain size and optimize the comprehensive mechanical properties of the material. At the same time, the maximum strengthening effect of CR can be achieved when the deformation is 50%. In addition, the temperature benefit of CR can reduce stacking fault energy.


Sign in / Sign up

Export Citation Format

Share Document