Relaxation Parameters of Cu/substrate Type Coated Systems Under Nanoindentation

Author(s):  
D. Grabco ◽  
C. Pyrtsac ◽  
O. Shikimaka
2013 ◽  
Vol 58 (2) ◽  
pp. 529-533 ◽  
Author(s):  
R. Koleňák ◽  
M. Martinkovič ◽  
M. Koleňáková

The work is devoted to the study of shear strength of soldered joints fabricated by use of high-temperature solders of types Bi-11Ag, Au-20Sn, Sn-5Sb, Zn-4Al, Pb-5Sn, and Pb-10Sn. The shear strength was determined on metallic substrates made of Cu, Ni, and Ag. The strength of joints fabricated by use of flux and that of joints fabricated by use of ultrasonic activation without flux was compared. The obtained results have shown that in case of soldering by use of ultrasound (UT), higher shear strength of soldered joints was achieved with most solders. The highest shear strength by use of UT was achieved with an Au-20Sn joint fabricated on copper, namely up to 195 MPa. The lowest average values were achieved with Pb-based solders (Pb-5Sn and Pb-10Sn). The shear strength values of these solders used on Cu substrate varied from 24 to 27 MPa. DSC analysis was performed to determine the melting interval of lead-free solders.


2020 ◽  
Vol 63 (5) ◽  
pp. 469-478
Author(s):  
Sally C. Fryar ◽  
Kevin D. Hyde ◽  
David E. A. Catcheside

AbstractA survey of driftwood and mangrove wood in South Australia revealed a high diversity of marine fungi. Across eight sites there were 43 species of marine fungi, of which 42 are new records for South Australia, 11 new records for Australia and 12 taxa currently of uncertain status likely to be new species. Sites had distinctive species compositions with the largest difference attributable to substrate type (beach driftwood vs. mangrove wood). However, even between mangrove sites, species assemblages were distinctly different with only the more common species occurring at all mangrove sites. More intensive surveys across a broader range of habitats and geographic locations should reveal significantly more species.


2004 ◽  
Vol 36 (8) ◽  
pp. 1199-1202 ◽  
Author(s):  
X. Ch. Lai ◽  
M. A. Pushkin ◽  
V. I. Troyan

Author(s):  
Yueying Su ◽  
Rui Zhu ◽  
Tianqing Zheng ◽  
Yanping Shen ◽  
Yanyi Xu ◽  
...  

2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Qing Wu ◽  
Max Döbeli ◽  
Tiziana Lombardo ◽  
Katharina Schmidt-Ott ◽  
Benjamin Watts ◽  
...  

AbstractIn the previous paper (Part I), the colorimetry and interferometric microscopy measurements on modern gold leaf models have revealed that the visual appearance of a gilded surface, both burnished and unburnished, depends strongly on the substrate type, surface roughness and texture, but not on the colour of the substrate. In this second part, we investigate the materials compositions and technical specifications of medieval gold leaf through combining literature sources and materials analysis such as scanning electron microscopy coupled with energy dispersive X-ray analysis (SEM–EDX) on samples taken from gilded wooden sculptures. Our study shows that the late medieval gold leaf has a high purity of about 23.7 carat and has an average thickness of 160 nm (with a peak value of 138 nm), purer and thicker than the modern gold leaves studies in Part I. Supportive Rutherford backscattering spectrometry (RBS) measurements on gilded models confirms the accuracy and reliability of the SEM–EDX observations on the medieval gold leaf samples. We additionally present observations of a rarely recorded special variant of medieval gold leaf—“fine reinforced gold leaf”. Combined with the findings from Part I, we conclude that light penetrating the medieval gold leaf and reflected from the gilding substrate could not be a significant, or even perceptible contribution to the visual appearance of the gilding. We argue that the misconception surrounding the correlation between the substrate colour and the gilded surface appearance can be attributed to the historical development of gilding and polychromy technologies.


2014 ◽  
Vol 26 (2) ◽  
pp. 87-95 ◽  
Author(s):  
J. Mittal ◽  
K.L. Lin

Purpose – This paper aims to compare the reflow and Zn diffusion behaviors in Sn-Zn and Sn-8.5Zn-0.5Ag-0.01Al-0.1Ga (5E) solders during soldering on a Ni/Cu substrate under infrared (IR) reflow. The study proposes a model on the effect of various elements particularly Zn diffusion behavior in the solders on the formation of intermetallic compounds (IMCs). Design/methodology/approach – The melting activities of two solders near their melting points on copper substrates are visualized in an IR reflow furnace. Reflowed solder joints were analyzed using scanning electron microscope and energy dispersive X-ray spectroscopy. Findings – Reflow behaviors of the solders are similar. During melting, solder balls are first merged into each other and then reflow on the substrate from top to bottom. Both solders show a reduced amount of Zn in the solder. Theoretical calculations demonstrate a higher Zn diffusion in the 5E solder; however, the amount of Zn actually observed at the solder/substrate interface is lower than Sn-9Zn solder due to the formation of ZnAg3 in the solder. A thinner IMC layer is formed at the interface in the 5E solder than the Sn-Zn solder. Research limitations/implications – The present work compares the 5E solder only with Sn-Zn solder. Additional research work may be required to compare 5E solder with other solders like Sn-Ag, SnAgCu, etc. to further establish its practical applications. Practical implications – The study ascertains the advantages of 5E solder over Sn-Zn solder for all practical applications. Originality/value – The significance of this paper is the understanding of the relation between reflow behavior of solders and reactivity of different elements in the solder alloys and substrate to form various IMCs and their influence on the formation of IMC layer at solder/substrate interface. Emphasis is provided for the diffusion behavior of Zn during reflow and respective reaction mechanisms.


Author(s):  
S. M. Baraishuk ◽  
T. M. Tkachenko ◽  
A. V. Stanchik ◽  
V. F. Gremenok ◽  
S. A. Bashkirov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document