Seismic Motion, Lithospheric Structures, Earthquake and Volcanic Sources: The Keiiti Aki Volume

Author(s):  
Yehuda Ben-Zion
Keyword(s):  
2018 ◽  
Vol 21 (13) ◽  
pp. 1307-1321
Author(s):  
Mahdia Yasmina Mehiaoui ◽  
M. Hadid ◽  
M. K. Berrah
Keyword(s):  

2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Xiuyan Hu ◽  
Qingjun Chen ◽  
Dagen Weng ◽  
Ruifu Zhang ◽  
Xiaosong Ren

In the design of damped structures, the additional equivalent damping ratio (EDR) is an important factor in the evaluation of the energy dissipation effect. However, previous additional EDR estimation methods are complicated and not easy to be applied in practical engineering. Therefore, in this study, a method based on energy dissipation is developed to simplify the estimation of the additional EDR. First, an energy governing equation is established to calculate the structural energy dissipation. By means of dynamic analysis, the ratio of the energy consumed by dampers to that consumed by structural inherent damping is obtained under external excitation. Because the energy dissipation capacity of the installed dampers is reflected by the additional EDR, the abovementioned ratio can be used to estimate the additional EDR of the damped structure. Energy dissipation varies with time, which indicates that the ratio is related to the duration of ground motion. Hence, the energy dissipation during the most intensive period in the entire seismic motion duration is used to calculate the additional EDR. Accordingly, the procedure of the proposed method is presented. The feasibility of this method is verified by using a single-degree-of-freedom system. Then, a benchmark structure with dampers is adopted to illustrate the usefulness of this method in practical engineering applications. In conclusion, the proposed method is not only explicit in the theoretical concept and convenient in application but also reflects the time-varying characteristic of additional EDR, which possesses the value in practical engineering.


2009 ◽  
Vol 1193 ◽  
Author(s):  
Taishi Oouchi ◽  
Hiroyuki Tsuchi ◽  
Tetsuya Ota ◽  
Koji Hane ◽  
Toru Sasaki

AbstractAccording to recent seismic observation records, there are some cases where unexpectedly large seismic motion was observed deep underground and that was larger than at the surface. The factors influencing such phenomena are assumed to be deep geological structures with topographic irregularity, velocity structure and non-linearity of subsurface layers. These factors should be taken into account in the earthquake-resistant design of a geological repository. The influence of a deep underground geological structure with topographic irregularity on ground motion has been studied and it has been confirmed that such a structure have a significant impact on ground motion and the constructive interference of waves may result in strong earthquake ground motion in the vicinity of a structural boundary deep underground.


2002 ◽  
Vol 18 (1) ◽  
pp. 1-17 ◽  
Author(s):  
K. Anastassiadis ◽  
I. E. Avramidis ◽  
P. Panetsos

According to the model of Penzien and Watabe, the three translational ground motion components on a specific point of the ground are statistically noncorrelated along a well-defined orthogonal system of axes p, w, and v, whose orientation remains reasonably stable over time during the strong motion phase of an earthquake. This orthotropic ground motion is described by three generally independent response spectra Sa, Sb, and Sc, respectively. The paper presents an antiseismic design procedure for structures according to the above seismic motion model. This design includes a) determination of the critical orientation of the seismic input, i.e., the orientation that gives the largest response, b) calculation of the maximum and the minimum values of any response quantity, and c) application of either the Extreme Stress Method or the Extreme Force Method for determining the most unfavorable combinations of several stress resultants (or sectional forces) acting concurrently at a specified section of a structural member.


Author(s):  
Shinichiro Kajii ◽  
Naoki Sawa ◽  
Nobuhiro Kunitake ◽  
K. Umeki

A three-dimensional (3D) seismic isolation system for FBR building is under development. The proposed vertical isolation system consists form hydraulic cylinders with water-based liquid and accumulators to support large vertical static load and to realize low natural frequency in the vertical direction. For horizontal isolation, laminated rubber isolator or sliding type isolator will be combined. Because the major part of the feasibility of this isolation system depends on the sealing function and durability of the hydraulic cylinder, a series of feasibility tests of the hydraulic cylinder have been conducted to verify the reliability against seismic load and seismic motion. This paper describes the specification of the seismic isolations system, seismic response characteristics and the results of the feasibility tests of the seal. This study was performed as part of a government sponsored R&D project on 3D seismic isolation.


Sign in / Sign up

Export Citation Format

Share Document