scholarly journals Estimation of Additional Equivalent Damping Ratio of the Damped Structure Based on Energy Dissipation

2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Xiuyan Hu ◽  
Qingjun Chen ◽  
Dagen Weng ◽  
Ruifu Zhang ◽  
Xiaosong Ren

In the design of damped structures, the additional equivalent damping ratio (EDR) is an important factor in the evaluation of the energy dissipation effect. However, previous additional EDR estimation methods are complicated and not easy to be applied in practical engineering. Therefore, in this study, a method based on energy dissipation is developed to simplify the estimation of the additional EDR. First, an energy governing equation is established to calculate the structural energy dissipation. By means of dynamic analysis, the ratio of the energy consumed by dampers to that consumed by structural inherent damping is obtained under external excitation. Because the energy dissipation capacity of the installed dampers is reflected by the additional EDR, the abovementioned ratio can be used to estimate the additional EDR of the damped structure. Energy dissipation varies with time, which indicates that the ratio is related to the duration of ground motion. Hence, the energy dissipation during the most intensive period in the entire seismic motion duration is used to calculate the additional EDR. Accordingly, the procedure of the proposed method is presented. The feasibility of this method is verified by using a single-degree-of-freedom system. Then, a benchmark structure with dampers is adopted to illustrate the usefulness of this method in practical engineering applications. In conclusion, the proposed method is not only explicit in the theoretical concept and convenient in application but also reflects the time-varying characteristic of additional EDR, which possesses the value in practical engineering.

2010 ◽  
Vol 163-167 ◽  
pp. 4367-4372
Author(s):  
Ai Rong Liu ◽  
Qi Cai Yu ◽  
Yuan Yao ◽  
Yu Zhu Guo

This paper investigated the superelasticity and hysteresis characteristics of TiNi shape memory alloy ( SMA ) wire at room temperature, then the mechanical parameters of which were obtained. Based on the TiNi SMA wire and a purchased viscous damper, a new type of hybrid-passive-damper was designed and developed. Experiments were performed in order to validate the relationship of loading frequency and characteristic parameters such as energy dissipation capacity, equivalent damping ratio and equivalent stiffness. Experimental results show that hybrid-passive-damper designed in this paper has excellent energy dissipation capacity and is suitable for the vibration control of structures with long vibration period.


2016 ◽  
Vol 61 (2) ◽  
pp. 341 ◽  
Author(s):  
Baizid Benahmed ◽  
Malek Hammoutene ◽  
Donatello Cardone

It is apparent that the dynamic response of a building dependson its energy dissipation capacity, hence damping ratio. Thedamping value experienced by a building during an earthquakediffers significantly from the value specified in the design step.This introduces uncertainties in the design process of the building.It would be desirable to consider not only the effects ofuncertainties in loading but also the uncertainties in the structuralparameters. In this paper, the effects of uncertainties in the estimation ofdamping ratio ξ, on the use of Damping Reduction Factors (DRF) for the evaluation of high damping response spectra,are examined. Damping uncertainties are described by a lognormalprobability distribution, and the Monte Carlo techniqueis used to generate the random values of damping. Theaverage of the distribution is the deterministic value of damping (taken equal to 5%, 7.5%, 10%, 20%, 30% and 40%) whilethree different values of coefficient of variation are considered (i.e. 10%, 20% and 40%, respectively). All the DRF formulations found in the literature are not able totake into consideration damping uncertainties, leading to significantdiscrepancies in the high damping response spectra. Based on the results of this study, a new DRF formulation, ableto account for uncertainties in damping estimation, is tentatively proposed.


2020 ◽  
Vol 21 (1) ◽  
pp. 103 ◽  
Author(s):  
Qiang Yu ◽  
Dengfeng Xu ◽  
Yu Zhu ◽  
Gaofeng Guan

As the damping ratio determines the response of a vibration isolation system at resonance, it is very necessary to estimate the damping ratio quickly and economically for an evaluation of the effectiveness to adjust the damping in practical engineering applications. An efficient method named the “ζ-Tr” method with the characteristics of simple operation and a high accuracy is introduced to estimate the damping ratio in this paper. According to the transmissibility curve, the specific mathematical relationship in which the value of the resonance peak corresponds to the value of the damping ratio is analysed theoretically. In this case, the recognition of the resonance peak can be used to directly estimate the damping ratio without an approximation or simplification. The “ζ-Tr” method is faster, more accurate and less costly than other estimation methods. Finally, the correctness of the “ζ-Tr” method is verified by a simulation and an experiment.


2019 ◽  
Vol 2019 ◽  
pp. 1-20
Author(s):  
Guofeng Xue ◽  
Wei Bao ◽  
Jin Jiang ◽  
Yongsong Shao

This study proposed a beam-to-column joint equipped with a new type of cast steel connector. The cast steel connector concentrated the primary portion of the deformation and energy dissipation of the joint and was installed with full bolted connections, rendering it a replaceable energy dissipation component and facilitating the rapid repair of the joint after an earthquake. Three full-scale specimens were fabricated and tested to investigate the hysteretic behaviors of the proposed joints under cyclic loadings. The results showed that the proposed cast steel connector exhibited reliable ductility and energy dissipation capacity. The beam-to-column joints with cast steel connectors under appropriate configuration can limit the deformation to the cast steel connector and protect the remaining joint components from plastic deformation. A more detailed finite element analysis was performed to investigate the hysteretic behavior of the joint further. The FEM results illustrated that the thickness of the vertical leg of the cast steel connector can significantly influence the stiffness and bearing capacity of the joint. Meantime, it would improve the hysteretic behavior effectively. The proposed beam-to-column joints with cast steel connectors can achieve the requirement of stiffness and load-bearing capacity and can be widely applicable in practical engineering.


Buildings ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 16
Author(s):  
Guohua Sun ◽  
Fei Li ◽  
Qiyou Zhou

This study aimed to study the cyclic behavior of two-side-connected precast-reinforced concrete infill panel (RCIP). A total of four RCIP specimens with different slit types and height-to-span ratios modeled at a one-third scale were tested subjected to cyclic lateral loads. The failure mode, hysteretic behavior, lateral strength, stiffness degradation, ductility, and energy dissipation capacity of each RCIP specimen were determined and analyzed. The specimens experienced a similar damage process, which involved concrete cracking, steel rebar yielding, concrete crushing, and plastic hinge formation. All the specimens showed pinched hysteretic curves, resulting in a small energy dissipation capacity and a maximum equivalent viscous damping ratio lower than 0.2. The specimens with penetrated slits experienced ductile failure, in which flexural hinges developed at both slit wall ends. The application of penetrated slits decreased the initial stiffness and lateral load-bearing capacity of the RC panel but increased the deformation capacity, the average ultimate drift ratios ranged from 1.41% to 1.99%, and the lowest average ductility ratio reached 2.48. The specimens with high-strength concrete resulted in a small slip no more than 1 mm between the RC panel and steel beam, and the channel shear connectors ensured that the RC infill panel developed a reliable assembly with the surrounding steel components. However, specimens with concealed vertical slits (CVSs) and concealed hollow slits (CHSs) achieved significantly higher lateral stiffness and lateral strength values. Generally, the specimens exhibited two-stage mechanical features. The concrete in the CVSs and CHSs was crushed, and flexural plastic hinges developed at both ends of the slit walls during the second stage. With increasing concrete strength, the initial lateral stiffness and lateral strength values of the RCIP specimens increased. With an increasing height-to-span ratio, the lateral stiffness and strength of the RC panels with slits decreased, but the failure mode remained unchanged.


2015 ◽  
Vol 764-765 ◽  
pp. 329-333
Author(s):  
Hee Cheul Kim ◽  
Young Hak Lee ◽  
Ha Eun Park ◽  
Dae Jin Kim ◽  
Jung Woo Park ◽  
...  

This study investigates the performance of a new lead rubber damper (LRD), which is more advanced than existing lead-rubber based isolation devices. In contrast to the existing devices, multiple lead cores are installed in the LRD in order to optimize the behavior of the laminated rubber and lead. It is able to perform effectively under the application of shear force. An experiment was performed to investigate its dependency on the level of shear strain and frequency. The damping ratio, energy dissipation capacity and effective stiffness of the device were also evaluated.


2018 ◽  
Vol 2018 ◽  
pp. 1-15
Author(s):  
Qin Zhang ◽  
Zong-yan Wei ◽  
Jin-xin Gong ◽  
Ping Yu ◽  
Yan-qing Zhang

In order to determine the energy dissipation capacity of flexure critical reinforced concrete (RC) columns reasonably, an expression for describing the hysteretic behavior including loading and unloading characteristics of flexure critical RC columns is presented, and then, a new equivalent viscous damping (EVD) ratio model including its simplified format, which is interpreted as a function of a displacement ductility factor and a ratio of secant stiffness to yield stiffness of columns, is developed based on the proposed hysteretic loop expression and experimental data from the PEER column database. To illustrate the application of the proposed equivalent damping ratio model, a case study of pushover analysis on a flexure critical RC bridge with a single-column pier is provided. The analytical results are also compared with the results obtained by other models, which indicate that the proposed model is more general and rational in predicting energy dissipation capacity of flexure critical RC structures subjected to earthquake excitations.


1993 ◽  
Vol 9 (3) ◽  
pp. 319-334 ◽  
Author(s):  
Robert D. Hanson

The results of several studies on the effects of supplemental viscous damping on the response of elastic and elasto-plastic single-degree-of-freedom systems are used to provide insight to the effects of large damping on the earthquake response of buildings and the interpretation of studies reporting the equivalent damping and increased stiffness characteristics of specific types of supplemental energy dissipation devices. Extension to multi-story buildings is discussed briefly. Conversion of the properties of viscous, viscoelastic, friction, and metallic yield device characteristics to equivalent viscous damping are proposed. Specific recommendations for the incorporation of the effects of supplemental energy dissipation devices in the code design process are given.


2018 ◽  
Vol 12 (1) ◽  
pp. 47-61
Author(s):  
Wenjuan Lv ◽  
Baodong Liu ◽  
Ming Li ◽  
Lin Li ◽  
Pengyuan Zhang

Background: For reinforced concrete structures under different humid conditions, the mechanical properties of concrete are significantly affected by the moisture content, which may result in a great change of the functional performance and bearing capacity. Objective: This paper presents an experiment to investigate the influence of the moisture content on the dynamic characteristics and hysteretic behavior of reinforced concrete column. Results: The results show that the natural frequency of reinforced concrete columns increases quickly at an early stage of immersion, but there is little change when the columns are close to saturation; the difference between the natural frequencies before and after cyclic test grows as the moisture content rises. The damping ratio slightly decreases first and then increases with the increase of moisture content; the damping ratio after the cyclic test is larger than before the test due to the development of the micro-cracks. Conclusion: The trend of energy dissipation is on the rise with increasing moisture content, although at an early stage, it decreases slightly. According to the experimental result, a formula for the moisture content on the average energy dissipation of reinforced concrete columns is proposed.


Sign in / Sign up

Export Citation Format

Share Document