The Role of Unified Geometrized Field Theories in the Genesis and Development of Quantum Theory

1994 ◽  
pp. 269-307
Author(s):  
Vladimir P. Vizgin
Author(s):  
Richard Healey

The metaphor that fundamental physics is concerned to say what the natural world is like at the deepest level may be cashed out in terms of entities, properties, or laws. The role of quantum field theories in the Standard Model of high-energy physics suggests that fundamental entities, properties, and laws are to be sought in these theories. But the contextual ontology proposed in Chapter 12 would support no unified compositional structure for the world; a quantum state assignment specifies no physical property distribution sufficient even to determine all physical facts; and quantum theory posits no fundamental laws of time evolution, whether deterministic or stochastic. Quantum theory has made a revolutionary contribution to fundamental physics because its principles have permitted tremendous unification of science through the successful application of models constructed in conformity to them: but these models do not say what the world is like at the deepest level.


Author(s):  
T. N. Palmer

A new law of physics is proposed, defined on the cosmological scale but with significant implications for the microscale. Motivated by nonlinear dynamical systems theory and black-hole thermodynamics, the Invariant Set Postulate proposes that cosmological states of physical reality belong to a non-computable fractal state-space geometry I , invariant under the action of some subordinate deterministic causal dynamics D I . An exploratory analysis is made of a possible causal realistic framework for quantum physics based on key properties of I . For example, sparseness is used to relate generic counterfactual states to points p ∉ I of unreality, thus providing a geometric basis for the essential contextuality of quantum physics and the role of the abstract Hilbert Space in quantum theory. Also, self-similarity, described in a symbolic setting, provides a possible realistic perspective on the essential role of complex numbers and quaternions in quantum theory. A new interpretation is given to the standard ‘mysteries’ of quantum theory: superposition, measurement, non-locality, emergence of classicality and so on. It is proposed that heterogeneities in the fractal geometry of I are manifestations of the phenomenon of gravity. Since quantum theory is inherently blind to the existence of such state-space geometries, the analysis here suggests that attempts to formulate unified theories of physics within a conventional quantum-theoretic framework are misguided, and that a successful quantum theory of gravity should unify the causal non-Euclidean geometry of space–time with the atemporal fractal geometry of state space. The task is not to make sense of the quantum axioms by heaping more structure, more definitions, more science fiction imagery on top of them, but to throw them away wholesale and start afresh. We should be relentless in asking ourselves: From what deep physical principles might we derive this exquisite structure? These principles should be crisp, they should be compelling. They should stir the soul. Chris Fuchs ( Gilder 2008 , p. 335)


2015 ◽  
Vol 45 (5) ◽  
pp. 641-702 ◽  
Author(s):  
Jeremiah James ◽  
Christian Joas

As part of an attempt to establish a new understanding of the earliest applications of quantum mechanics and their importance to the overall development of quantum theory, this paper reexamines the role of research on molecular structure in the transition from the so-called old quantum theory to quantum mechanics and in the two years immediately following this shift (1926–1928). We argue on two bases against the common tendency to marginalize the contribution of these researches. First, because these applications addressed issues of longstanding interest to physicists, which they hoped, if not expected, a complete quantum theory to address, and for which they had already developed methods under the old quantum theory that would remain valid under the new mechanics. Second, because generating these applications was one of, if not the, principal means by which physicists clarified the unity, generality, and physical meaning of quantum mechanics, thereby reworking the theory into its now commonly recognized form, as well as developing an understanding of the kinds of predictions it generated and the ways in which these differed from those of the earlier classical mechanics. More broadly, we hope with this article to provide a new viewpoint on the importance of problem solving to scientific research and theory construction, one that might complement recent work on its role in science pedagogy.


1999 ◽  
Vol 14 (16) ◽  
pp. 2551-2580 ◽  
Author(s):  
JONATHAN M. EVANS ◽  
JENS OLE MADSEN

We discuss certain integrable quantum field theories in 1+1 dimensions consisting of coupled sine/sinh–Gordon theories with N=1 supersymmetry, positive kinetic energy, and bosonic potentials which are bounded from below. We show that theories of this type can be constructed as Toda models based on the exceptional affine Lie superalgebra D(2,1;α)(1) (or on related algebras which can be obtained as various limits) provided one adopts appropriate reality conditions for the fields. In particular, there is a continuous family of such models in which the couplings and mass ratios all depend on the parameter α. The structure of these models is analyzed in some detail at the classical level, including the construction of conserved currents with spins up to 4. We then show that these currents generalize to the quantum theory, thus demonstrating quantum-integrability of the models.


2012 ◽  
Vol 21 (6) ◽  
pp. 2
Author(s):  
Gyeong Soon IM
Keyword(s):  

2021 ◽  
Vol 2105 (1) ◽  
pp. 012002
Author(s):  
Pascal Anastasopoulos

Abstract The present research proceeding aims at investigating/exploring/sharpening the phenomenological consequences of string theory and holography in particle physics and cosmology. We rely on and elaborate on the recently proposed framework whereby four-dimensional quantum field theories describe all interactions in Nature, and gravity is an emergent and not a fundamental force. New gauge fields, axions, and fermions, which can play the role of right-handed neutrinos, can also emerge in this framework. Preprint: UWThPh 2021-8


KronoScope ◽  
2012 ◽  
Vol 12 (2) ◽  
pp. 219-244 ◽  
Author(s):  
Pierre Uzan

AbstractThis paper explores the philosophy of neutral monism within the framework of a generalized version of quantum theory where all references to the physical world have been relaxed. Psychic and somatic features of the individual are conceived of as co-emergent, complementary properties of an underlying, psychophysical level of reality. It is shown that their entanglement can be interpreted in terms of non-causal correlations and parameterized by time, which thus plays the role of psychophysical interface.


Sign in / Sign up

Export Citation Format

Share Document