Forest Fires and Soil Erosion Effects on Soil Organic Carbon in the Serrano River Basin (Chilean Patagonia)

Soil Carbon ◽  
2014 ◽  
pp. 229-237 ◽  
Author(s):  
Carlos A. Bonilla ◽  
Pablo A. Pastén ◽  
Gonzalo E. Pizarro ◽  
Virginia I. González ◽  
Athena B. Carkovic ◽  
...  
Soil Research ◽  
2017 ◽  
Vol 55 (4) ◽  
pp. 363 ◽  
Author(s):  
Ahmet Cilek

Soil organic carbon (SOC) is one of the primary elements required in the functioning of ecosystems. Soil erosion, a major mechanism of land degradation, removes SOC and transfers it to the hydrosphere or the atmosphere, thereby affecting key ecosystem functions and services. The Mediterranean region is highly susceptible to land degradation because of erosion due to heavy rains following long, dry, hot summers. Although the Mediterranean landscape typically has a high altitude and incline, the soil is brittle and soft and is easily washed away by rain. Thus, vast regions in Turkey have been afflicted by this type of soil degradation. This study aimed to (1) estimate the temporal distribution of water erosion in the Seyhan River Basin, (2) assess the spatial distribution of SOC and (3) estimate the depletion of SOC through soil erosion using the Pan-European Soil Erosion Risk Assessment model, a physically based, regionally scaled soil erosion model. The annual amount of soil eroded from the Seyhan River Basin is estimated to be 7.8million tonnes per hectare (tha–1year–1). The amount of fertile soil loss from agricultural areas is ~1.2million tonnes per year. The maximum amount of soil erosion occurs in maintenance scrubland and degraded forest areas, contributing to 68% of erosion, followed by that in agricultural land, contributing to 27% of erosion, with the remaining in forests and urban areas.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1438
Author(s):  
Snežana Jakšić ◽  
Jordana Ninkov ◽  
Stanko Milić ◽  
Jovica Vasin ◽  
Milorad Živanov ◽  
...  

Spatial distribution of soil organic carbon (SOC) is the result of a combination of various factors related to both the natural environment and anthropogenic activities. The aim of this study was to examine (i) the state of SOC in topsoil and subsoil of vineyards compared to the nearest forest, (ii) the influence of soil management on SOC, (iii) the variation in SOC content with topographic position, (iv) the intensity of soil erosion in order to estimate the leaching of SOC from upper to lower topographic positions, and (v) the significance of SOC for the reduction of soil’s susceptibility to compaction. The study area was the vineyard region of Niš, which represents a medium-sized vineyard region in Serbia. About 32% of the total land area is affected, to some degree, by soil erosion. However, according to the mean annual soil loss rate, the total area is classified as having tolerable erosion risk. Land use was shown to be an important factor that controls SOC content. The vineyards contained less SOC than forest land. The SOC content was affected by topographic position. The interactive effect of topographic position and land use on SOC was significant. The SOC of forest land was significantly higher at the upper position than at the middle and lower positions. Spatial distribution of organic carbon in vineyards was not influenced by altitude, but occurred as a consequence of different soil management practices. The deep tillage at 60–80 cm, along with application of organic amendments, showed the potential to preserve SOC in the subsoil and prevent carbon loss from the surface layer. Penetrometric resistance values indicated optimum soil compaction in the surface layer of the soil, while low permeability was observed in deeper layers. Increases in SOC content reduce soil compaction and thus the risk of erosion and landslides. Knowledge of soil carbon distribution as a function of topographic position, land use and soil management is important for sustainable production and climate change mitigation.


2013 ◽  
Vol 10 (5) ◽  
pp. 866-872 ◽  
Author(s):  
Xiao-guo Wang ◽  
Bo Zhu ◽  
Ke-ke Hua ◽  
Yong Luo ◽  
Jian Zhang ◽  
...  

2019 ◽  
Vol 8 (1) ◽  
Author(s):  
Tong Li ◽  
Haicheng Zhang ◽  
Xiaoyuan Wang ◽  
Shulan Cheng ◽  
Huajun Fang ◽  
...  

2014 ◽  
Vol 11 (18) ◽  
pp. 5235-5244 ◽  
Author(s):  
A. Chappell ◽  
N. P. Webb ◽  
R. A. Viscarra Rossel ◽  
E. Bui

Abstract. The debate remains unresolved about soil erosion substantially offsetting fossil fuel emissions and acting as an important source or sink of CO2. There is little historical land use and management context to this debate, which is central to Australia's recent past of European settlement, agricultural expansion and agriculturally-induced soil erosion. We use "catchment" scale (∼25 km2) estimates of 137Cs-derived net (1950s–1990) soil redistribution of all processes (wind, water and tillage) to calculate the net soil organic carbon (SOC) redistribution across Australia. We approximate the selective removal of SOC at net eroding locations and SOC enrichment of transported sediment and net depositional locations. We map net (1950s–1990) SOC redistribution across Australia and estimate erosion by all processes to be ∼4 Tg SOC yr−1, which represents a loss of ∼2% of the total carbon stock (0–10 cm) of Australia. Assuming this net SOC loss is mineralised, the flux (∼15 Tg CO2-equivalents yr−1) represents an omitted 12% of CO2-equivalent emissions from all carbon pools in Australia. Although a small source of uncertainty in the Australian carbon budget, the mass flux interacts with energy and water fluxes, and its omission from land surface models likely creates more uncertainty than has been previously recognised.


Sign in / Sign up

Export Citation Format

Share Document