Soil organic carbon losses by water erosion in a Mediterranean watershed

Soil Research ◽  
2017 ◽  
Vol 55 (4) ◽  
pp. 363 ◽  
Author(s):  
Ahmet Cilek

Soil organic carbon (SOC) is one of the primary elements required in the functioning of ecosystems. Soil erosion, a major mechanism of land degradation, removes SOC and transfers it to the hydrosphere or the atmosphere, thereby affecting key ecosystem functions and services. The Mediterranean region is highly susceptible to land degradation because of erosion due to heavy rains following long, dry, hot summers. Although the Mediterranean landscape typically has a high altitude and incline, the soil is brittle and soft and is easily washed away by rain. Thus, vast regions in Turkey have been afflicted by this type of soil degradation. This study aimed to (1) estimate the temporal distribution of water erosion in the Seyhan River Basin, (2) assess the spatial distribution of SOC and (3) estimate the depletion of SOC through soil erosion using the Pan-European Soil Erosion Risk Assessment model, a physically based, regionally scaled soil erosion model. The annual amount of soil eroded from the Seyhan River Basin is estimated to be 7.8million tonnes per hectare (tha–1year–1). The amount of fertile soil loss from agricultural areas is ~1.2million tonnes per year. The maximum amount of soil erosion occurs in maintenance scrubland and degraded forest areas, contributing to 68% of erosion, followed by that in agricultural land, contributing to 27% of erosion, with the remaining in forests and urban areas.

2020 ◽  
Author(s):  
Tor-Gunnar Vågen ◽  
Leigh Ann Winowiecki ◽  
Aida Bargues-Tobella

<p>Earth observation (EO) has a large potential for mapping of soil functional properties such as soil organic carbon, soil pH or acidity, soil fertility parameters and soil texture. Recent advances in the application of EO data in combination with systematic field data sampling, standardized soil data reference analysis and the use of soil spectroscopy have shown these approaches to be both robust and scalable. We present a case study from Rwanda where we apply EO data in combination with field and laboratory data collected using the Land Degradation Surveillance Framework (LDSF) to map functional soil properties, soil erosion prevalence and land cover at fine spatial resolution. Digital soil maps were produced at a spatial resolution of 30m with an accuracy of 85 to 90%, while soil erosion prevalence was mapped with an accuracy of 86% using Landsat satellite imagery and machine learning models. </p><p>We also assess interactions between spatial assessments of soil organic carbon, soil erosion prevalence and land cover at a spatial resolution of 30m in order to identify land degradation hotspots and better target interventions to restore degraded land across four districts in Rwanda. We further explore the effects of soil erosion, root-depth restrictions and soil organic carbon content on saturated hydraulic conductivity in three LDSF sites in Nyagatare, Kayonza and Bugesera districts, respectively. Saturated hydraulic conductivity was modeled based on single-ring measurements of infiltration capacity using a modified Reynolds & Elrick steady-state single ring model for 48 LDSF plots per site. The results show significant spatial variation in infiltrability within sites.</p><p>The results of the study show the importance of rigorous protocols for sampling and analyses of soil properties and indicators of land health across landscapes. By simultaneously assessing soil properties, indicators of land degradation and soil infiltrability we demonstrate the utility of these approaches in understanding drivers of land degradation across multiple spatial scales for targeting of options for land restoration and monitoring of the effectiveness of these interventions over time across multiple dimensions of land health.</p>


2016 ◽  
Vol 113 (24) ◽  
pp. 6617-6622 ◽  
Author(s):  
Yao Yue ◽  
Jinren Ni ◽  
Philippe Ciais ◽  
Shilong Piao ◽  
Tao Wang ◽  
...  

Soil erosion by water impacts soil organic carbon stocks and alters CO2 fluxes exchanged with the atmosphere. The role of erosion as a net sink or source of atmospheric CO2 remains highly debated, and little information is available at scales larger than small catchments or regions. This study attempts to quantify the lateral transport of soil carbon and consequent land−atmosphere CO2 fluxes at the scale of China, where severe erosion has occurred for several decades. Based on the distribution of soil erosion rates derived from detailed national surveys and soil carbon inventories, here we show that water erosion in China displaced 180 ± 80 Mt C⋅y−1 of soil organic carbon during the last two decades, and this resulted a net land sink for atmospheric CO2 of 45 ± 25 Mt C⋅y−1, equivalent to 8–37% of the terrestrial carbon sink previously assessed in China. Interestingly, the “hotspots,” largely distributed in mountainous regions in the most intensive sink areas (>40 g C⋅m−2⋅y−1), occupy only 1.5% of the total area suffering water erosion, but contribute 19.3% to the national erosion-induced CO2 sink. The erosion-induced CO2 sink underwent a remarkable reduction of about 16% from the middle 1990s to the early 2010s, due to diminishing erosion after the implementation of large-scale soil conservation programs. These findings demonstrate the necessity of including erosion-induced CO2 in the terrestrial budget, hence reducing the level of uncertainty.


2020 ◽  
Author(s):  
Leticia Gaspar ◽  
Lionel Mabit ◽  
Ivan Lizaga ◽  
Ana Navas

<p>The main route for the lateral movement of soil organic carbon (SOC) is water erosion. Awareness of the distribution and magnitude of land carbon mobilization is important both for improving models of the carbon cycle and for management practices aimed to preserve carbon stocks and enhance carbon sinks. There is a need to consider the global significance of soil erosion from soil organic carbon cycling schemes and for this reason, the movement of SOC during erosion processes should be elucidated.</p><p>Our study aims to estimate the SOC redistribution induced by water erosion during a 40 years period in an agroforestry mountain ecosystem located in northern Spain. To this purpose, topographically driven transects were selected with mixed land uses to i) assess what factors modify the runoff patterns with impact on soil and carbon redistribution and ii) evaluate the mobilization of topsoil organic carbon along the transects.</p><p>The lateral movement of SOC shows similar spatial patterns with that of soil erosion. To identify whether erosional or depositional processes have been predominant in the sampling sites we used <sup>137</sup>Cs inventories and the characterization of terrain attributes of the study with a detailed analysis of the main runoff pathways. Results indicate that SOC losses were related to an increase in water flow accumulation, while the highest SOC gains were recorded at concave positions. Soil erosion processes and the content of SOC in soils are the two main factors controlling carbon budgets. The topographical and geomorphological characteristics of the transects, the spatial distribution of land uses and the presence of landscape linear elements such as terraces or paths, affect runoff and determine the sediment connectivity and carbon dynamics along the slopes.</p><p>The interactions between topography and land use produce significant positive or negative effects on SOC accumulation, particularly in areas with complex topography, as the results obtained in our study sustain. Even though the effect of topography and land use/land cover and their interactions on the horizontal distributions of carbon remains largely unknown, our approach contributes to better understand the pattern of gains and losses of soil organic and inorganic carbon induced by water erosion.</p>


Soil Carbon ◽  
2014 ◽  
pp. 229-237 ◽  
Author(s):  
Carlos A. Bonilla ◽  
Pablo A. Pastén ◽  
Gonzalo E. Pizarro ◽  
Virginia I. González ◽  
Athena B. Carkovic ◽  
...  

2013 ◽  
Vol 9 (1) ◽  
pp. 45-56 ◽  
Author(s):  
Ngamindra Dahal ◽  
Roshan M Bajracharya

Agricultural land is one of the major sources of carbon dioxide (CO2) emission, which results in an increase of the CO2 concentration in the atmosphere. The conversion of biomass rich land like forests to agricultural land results in the release of carbon into the atmosphere. Once the CO2 enters into the atmosphere, it remains as a potent greenhouse gas for decades unless it is absorbed by plants through photosynthesis. Therefore, there is a need for abating CO2 emissions by enhancing carbon sequestration. Soils store twice as much carbon than vegetation and two thirds more than the atmosphere, and thus can store a significant quantity of CO2. Unsustainable farming leads to land degradation and the release of soil organic carbon (SOC). SOC may return directly to the atmosphere from the soil when organic material decays through decomposition or burning. SOC is important not only to maintain and enrich soil nutrients, but also in preventing the release of carbon in the forms of CO2 and Methane (CH4) into the atmosphere. Mountain agricultural land is sensitive to extreme weather events, such as heavy precipitation or long periods of drought. Such extreme events can trigger high soil erosion leading to losses of SOC. Hence, enhancing and conserving SOC is important for reducing soil erosion and the emission of greenhouse gases from lands, and to maintain a high moisture holding capacity of the soils. In many parts of Nepal, farmers have adopted various soil management practices in an effort to preserve fertile soils, which in many cases contribute to the reduction of carbon emissions.DOI: http://dx.doi.org/10.3126/jfl.v9i1.8593 Journal of Forestry and Livelihood Vol.9(1) 2010 45-56


2020 ◽  
Author(s):  
Leigh Ann Winowiecki ◽  
Athanase Mukuralinda ◽  
Aida Bargués-Tobella ◽  
Providence Mujawamaria ◽  
Elisée Bahati Ntawuhiganayo ◽  
...  

Abstract. Land restoration is of critical importance in Rwanda, where land degradation negatively impacts crop productivity, water, food and nutrition security. We implemented the Land Degradation Surveillance Framework in Kayonza and Nyagatare districts in eastern Rwanda to assess baseline status of key soil and land health indicators, including soil organic carbon (SOC) and soil erosion prevalence. We collected 300 topsoil (0–20 cm) and 281 subsoil (20–50 cm) samples from two 100 km2 sites. We coupled the soil health indicators with vegetation structure, tree density and tree diversity assessments. Mean topsoil organic carbon was low overall, 20.9 g kg−1 in Kayonza and 17.3 g kg−1 in Nyagatare. Stable carbon isotope values (d13CV-PDB ) ranged from −15.35 to −21.34 ‰ indicating a wide range of plant communities with both C3 and C4 photosynthetic pathways. Soil carbon content decreased with increasing sand content across both sites and at both sampling depths and was lowest in croplands compared to shrubland, woodland and grasslands. Field-saturated hydraulic conductivity (Kfs) was estimated based on infiltration measurements, with a median of 76 mm h−1 in Kayonza and 62 mm h−1 in Nyagatare, respectively. Topsoil OC had a positive effect on Kfs, whereas pH, sand and compaction had negative effects. Soil erosion was highest in plots classified as woodland and shrubland. Maps of soil erosion and SOC at 30-m resolution were produced with high accuracy and showed high variability across the region. These data and analysis demonstrate the importance of systematically monitoring multiple indicators at multiple spatial scales to assess drivers of degradation and their impact on soil organic carbon dynamics.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1438
Author(s):  
Snežana Jakšić ◽  
Jordana Ninkov ◽  
Stanko Milić ◽  
Jovica Vasin ◽  
Milorad Živanov ◽  
...  

Spatial distribution of soil organic carbon (SOC) is the result of a combination of various factors related to both the natural environment and anthropogenic activities. The aim of this study was to examine (i) the state of SOC in topsoil and subsoil of vineyards compared to the nearest forest, (ii) the influence of soil management on SOC, (iii) the variation in SOC content with topographic position, (iv) the intensity of soil erosion in order to estimate the leaching of SOC from upper to lower topographic positions, and (v) the significance of SOC for the reduction of soil’s susceptibility to compaction. The study area was the vineyard region of Niš, which represents a medium-sized vineyard region in Serbia. About 32% of the total land area is affected, to some degree, by soil erosion. However, according to the mean annual soil loss rate, the total area is classified as having tolerable erosion risk. Land use was shown to be an important factor that controls SOC content. The vineyards contained less SOC than forest land. The SOC content was affected by topographic position. The interactive effect of topographic position and land use on SOC was significant. The SOC of forest land was significantly higher at the upper position than at the middle and lower positions. Spatial distribution of organic carbon in vineyards was not influenced by altitude, but occurred as a consequence of different soil management practices. The deep tillage at 60–80 cm, along with application of organic amendments, showed the potential to preserve SOC in the subsoil and prevent carbon loss from the surface layer. Penetrometric resistance values indicated optimum soil compaction in the surface layer of the soil, while low permeability was observed in deeper layers. Increases in SOC content reduce soil compaction and thus the risk of erosion and landslides. Knowledge of soil carbon distribution as a function of topographic position, land use and soil management is important for sustainable production and climate change mitigation.


2020 ◽  
Vol 13 (1) ◽  
pp. 51
Author(s):  
Alexandra Pagáč Mokrá ◽  
Jakub Pagáč ◽  
Zlatica Muchová ◽  
František Petrovič

Water erosion is a phenomenon that significantly damages agricultural land. The current land fragmentation in Slovakia and the complete ambiguity of who owns it leads to a lack of responsibility to care for the land in its current condition, which could affect its sustainability in the future. The reason so much soil has eroded is obvious when looking at current land management, with large fields, a lack of windbreaks between them, and no barriers to prevent soil runoff. Land consolidation might be the solution. This paper seeks to evaluate redistributed land and, based on modeling by the Universal Soil Loss Equation (USLE) method, to assess the degree of soil erosion risk. Ownership data provided information on how many owners and what amount of area to consider, while taking into account new conditions regarding water erosion. The results indicate that 2488 plots of 1607 owners which represent 12% of the model area are still endangered by water erosion, even after the completion of the land consolidation project. The results also presented a way of evaluating the territory and aims to trigger a discussion regarding an unambiguous definition of responsibility in the relationship between owner and user.


Sign in / Sign up

Export Citation Format

Share Document